Answer on Question \#75922 - Math - Algebra

Question

The polynomial $f(x)=2 \cdot x^{2}+k \cdot x^{2}-3 \cdot x+5$ and $g(x)=x^{3}+2 \cdot x^{2}-x+k$ when divided by $(x-2)$ leave two remainders r_{1} and r_{2} respectively. Find the value of ' k " if $r_{1}-r_{2}=0$.

Solution

Division polynomial $f(x)$ by ($x-2$):

$$
\begin{gathered}
\frac{x \cdot(2+k)+(1+2 \cdot k)}{(x-2) \mid x^{2} \cdot(2+k)-3 \cdot x+5} \\
\frac{x^{2} \cdot(2+k)-2 \cdot(2+k) \cdot x}{0 \quad x \cdot(1+2 \cdot k)+5} \\
0 \\
0 \quad 0 \quad 5 \cdot(1+2 \cdot k)-2 \cdot(1+2 \cdot k) \\
0 \quad 5+2 \cdot(1+2 \cdot k)
\end{gathered}
$$

$r_{1}=5+2 \cdot(1+2 \cdot k)=5+2+4 \cdot k=7+4 \cdot k$
Division polynomial $g(x)$ by ($x-2$):

$$
r_{2}=14+k
$$

Find \mathbf{k}

$$
\begin{aligned}
& \underline{x^{2}+4 \cdot x+7} \\
& (x-2) \mid x^{3}+2 \cdot x^{2}-x+k \\
& x^{3}-2 \cdot x^{2} \\
& 0 \text { 4. } x^{2}-x+k \\
& 0 \quad 4 \cdot x^{2}-8 \cdot k \\
& 0 \quad 0 \quad 7 \cdot x+k \\
& 0 \quad 0 \quad 7 \cdot x-14 \\
& 0 \quad 0 \quad 0 \quad 14+\mathbf{k}
\end{aligned}
$$

$$
\begin{gathered}
r_{1}-r_{2}=0 \\
7+4 \cdot k-14-k=0 \\
3 \cdot k=7 \\
k=\frac{7}{3}
\end{gathered}
$$

Answer: $\mathrm{k}=\frac{7}{3}$.

