From the equation of the plane passing through $(2,3,-1)$ and perpendicular to the line joining the points ($3,4,-1$) and ($2,-1,5$).

Solution:
We can write the equation of the plane in such way: $\mathrm{A}\left(\mathrm{x}-\mathrm{x}_{0}\right)+\mathrm{B}\left(\mathrm{y}-\mathrm{y}_{0}\right)+\mathrm{C}\left(\mathrm{z}-\mathrm{z}_{0}\right)=0$, where $\bar{n}=(A, B, C)$ is normal vector, $\mathrm{P}_{0}=\left(\mathrm{x}_{0}, \mathrm{y}_{0}, z_{0}\right)$ is point on the plane.

We can use coordinates of two points on the line to find the normal vector. $\bar{n}=(3-2,4-$ $(-1),-1-5)=(5,5,-6)$.

Now we can write the equation of the plane:
$5(x-2)+5(y-3)-6(z+1)=0$
$5 x-10+5 y-15-6 z-6=0$
Finally, simplifying we get:
$5 x+5 y-6 z-31=0$.

