Answer on Question \#75616 - Math - Linear Algebra Question

Determine all values of the constant a for which the following system has (a) no solution, (b) an infinite number of solutions, and (c) a unique solution.

$$
\begin{aligned}
& a x_{1}+x_{2}+x_{3}=1 \\
& x_{1}+a x_{2}+x_{3}=1 \\
& x_{1}+x_{2}+a x_{3}=1
\end{aligned}
$$

Solution

The coefficient matrix

$$
A=\left(\begin{array}{lll}
a & 1 & 1 \\
1 & a & 1 \\
1 & 1 & a
\end{array}\right)
$$

Find
$\operatorname{det} A=\left|\begin{array}{lll}a & 1 & 1 \\ 1 & a & 1 \\ 1 & 1 & a\end{array}\right|=a\left|\begin{array}{ll}a & 1 \\ 1 & a\end{array}\right|-\left|\begin{array}{ll}1 & 1 \\ 1 & a\end{array}\right|+\left|\begin{array}{ll}1 & a \\ 1 & 1\end{array}\right|=$
$=a\left(a^{2}-a\right)-(a-1)+(1-a)=(a-1)(a(a+1)-2)=$
$=(a-1)^{2}(a+2)$
The linear system has a unique solution iff $\operatorname{det} A \neq 0$

$$
\begin{gathered}
(a-1)^{2}(a+2) \neq 0 \\
a \neq-2, a \neq 1
\end{gathered}
$$

If $a=1$

$$
\begin{aligned}
& x_{1}+x_{2}+x_{3}=1 \\
& x_{1}+x_{2}+x_{3}=1 \\
& x_{1}+x_{2}+x_{3}=1
\end{aligned}
$$

There is one equation for three variables.
The system has an infinite number of solutions.

If $a=-2$

$$
\begin{gathered}
-2 x_{1}+x_{2}+x_{3}=1 \\
x_{1}-2 x_{2}+x_{3}=1 \\
x_{1}+x_{2}-2 x_{3}=1
\end{gathered}
$$

Add three equations

$$
\left(-2 x_{1}+x_{2}+x_{3}\right)+\left(x_{1}-2 x_{2}+x_{3}\right)+\left(x_{1}+x_{2}-2 x_{3}\right)=1+1+1
$$

We have

$$
0=3, \text { False }
$$

The system is inconsistent. Therefore, the system has no solutions.

Answer:

(a) If $a=-2$, the system has no solution.
(b) If $a=1$, the system has an infinite number of solutions.
(c) If $a \neq-2, a \neq 1$ the system has a unique solution.

