Answer on Question \#75562 - Math - Differential Geometry | Topology

Question

Show that the circular cylinder $S=\left\{(x, y, z) \in R^{\wedge} 3 \mid x^{\wedge} 2+y^{\wedge} 2=1\right\}$ can be covered by a single surface patch and so a surface.

Solution

We can take U an annulus instead of a disc, where $U=\left\{(u, v): 0<u^{2}+v^{2}<\pi\right\}$. Any point in the annulus U is uniquely of the form ($\operatorname{t\operatorname {cos}\vartheta \text {,}t\operatorname {sin}\vartheta \text {)forsomereal}t\in (0,\sqrt {}\pi),\vartheta \in ,~(x,~)~}$ $[0,2 \pi)$. Map this point to the point of the cylinder $(x, y, z)=\left(\cos \vartheta, \sin \vartheta, \cot \left(t^{2}\right)\right)$. This is clearly a subset of the cylinder as it satisfies $x^{2}+y^{2}=1$. Also, because ϑ ranges in $[0,2 \pi)$, for any fixed z the entire slice of the cylinder at that z level gets covered. Finally, because the cotangent of t^{2} for $t \in(0, \sqrt{\pi})$ takes on every real value, every level z indeed gets a hit, showing the result of mapping the annulus as above covers the whole cylinder.

