

Answer on Question #75562 – Math – Differential Geometry | Topology

Question

Show that the circular cylinder $S=\{(x,y,z)\in\mathbb{R}^3 \mid x^2+y^2=1\}$ can be covered by a single surface patch and so a surface.

Solution

We can take U an annulus instead of a disc, where $U = \{(u, v) : 0 < u^2 + v^2 < \pi\}$. Any point in the annulus U is uniquely of the form $(t\cos\vartheta, t\sin\vartheta)$ for some real $t \in (0, \sqrt{\pi})$, $\vartheta \in [0, 2\pi)$. Map this point to the point of the cylinder $(x, y, z) = (\cos\vartheta, \sin\vartheta, \cot(t^2))$. This is clearly a subset of the cylinder as it satisfies $x^2 + y^2 = 1$. Also, because ϑ ranges in $[0, 2\pi)$, for any fixed z the entire slice of the cylinder at that z level gets covered. Finally, because the cotangent of t^2 for $t \in (0, \sqrt{\pi})$ takes on every real value, every level z indeed gets a hit, showing the result of mapping the annulus as above covers the whole cylinder.