Answer on Question #75562 – Math – Differential Geometry | Topology

Question

Show that the circular cylinder $S = \{(x,y,z) \in \mathbb{R}^3 | x^2 + y^2 = 1\}$ can be covered by a single surface patch and so a surface.

Solution

We can take U an annulus instead of a disc, where $U = \{(u, v): 0 < u^2 + v^2 < \pi\}$. Any point in the annulus U is uniquely of the form $(tcos\vartheta, tsin\vartheta)$ for some real $t \in (0, \sqrt{\pi}), \vartheta \in [0, 2\pi)$. Map this point to the point of the cylinder $(x, y, z) = (cos\vartheta, sin\vartheta, cot(t^2))$. This is clearly a subset of the cylinder as it satisfies $x^2 + y^2 = 1$. Also, because ϑ ranges in $[0, 2\pi)$, for any fixed z the entire slice of the cylinder at that z level gets covered. Finally, because the cotangent of t^2 for $t \in (0, \sqrt{\pi})$ takes on *every* real value, every level z indeed gets a hit, showing the result of mapping the annulus as above covers the whole cylinder.