

Answer on Question #75453 - Subject – Abstract Algebra

Given: $G = \langle x \rangle$ and $o(G) = 25$

To prove or disprove: $G = \langle x^\alpha \rangle$ where α is a factor of 25.

Solution: Consider $G = \langle x \rangle$ and $o(G) = 25$

$\Rightarrow G$ is a cyclic group and generated by x .

$$\therefore x^{25} = e \quad \text{and} \quad o(x) = 25$$

\therefore The order of an element in G can be 1, 5 or 25.

Let x^α generate the group G and α is a factor of 25, therefore

$$o(x^\alpha) = 25 \quad \text{and} \quad 25 = \alpha k, \text{ where } k < 25 \text{ is an integer}$$

$$\begin{aligned} Q \quad x^{25} = e \quad & \Rightarrow \quad x^{\alpha k} = e \\ & \Rightarrow \quad (x^\alpha)^k = e \\ & \Rightarrow \quad k = 25 \end{aligned}$$

But $k \neq 25$. Therefore α can't be a factor of 25.

Hence, given statement is false.