Given: $G=<x>$ and $o(G)=25$

To prove or disprove: $G=<x^{\alpha}>$ where α is a factor of 25 .
Solution: Consider $G=\langle x\rangle$ and $o(G)=25$
$\Rightarrow \mathrm{G}$ is a cyclic group and generated by x.
$\therefore \quad x^{25}=e \quad$ and $\quad o(x)=25$
$\therefore \quad$ The order of an element in G can be 1,5 or 25.
Let x^{α} generate the group G and α is a factor of 25 , therefore

$$
o\left(x^{\alpha}\right)=25 \quad \text { and } \quad 25=\alpha k, \text { where } \mathrm{k}<25 \text { is an integer }
$$

Q $\quad x^{25}=e \quad \Rightarrow \quad x^{\alpha k}=e$

$$
\begin{aligned}
& \Rightarrow \quad\left(x^{\alpha}\right)^{k}=e \\
& \Rightarrow \quad k=25
\end{aligned}
$$

But $\quad k \neq 25$. Therefore α can't be a factor of 25 .
Hence, given statement is false.

