Answer on Question #75453 - Subject – Abstract Algebra

<u>Given:</u> G = < x >and o(G) = 25

To prove or disprove: $G = \langle x^{\alpha} \rangle$ where α is a factor of 25.

Solution: Consider G = < x > and o(G) = 25

 \Rightarrow G is a cyclic group and generated by x.

 $\therefore \qquad x^{25} = e \qquad \text{and} \qquad o(x) = 25$

 \therefore The order of an element in G can be 1, 5 or 25.

Let x^{α} generate the group G and α is a factor of 25, therefore

 $o(x^{\alpha}) = 25$ and $25 = \alpha k$, where k <25 is an integer $Q \qquad x^{25} = e \qquad \Rightarrow \qquad x^{\alpha k} = e$ $\Rightarrow \qquad (x^{\alpha})^{k} = e$ $\Rightarrow \qquad k = 25$

But $k \neq 25$. Therefore α can't be a factor of 25.

Hence, given statement is false.

Answer provided by AssignmentExpert.com