Answer on Question \#75363 - Math - Quantitative Methods

Question

Write down only one application of Runge Kutta Method to solve some real world problem.

Solution

The rate of change of the temperature $\mathrm{dT}(\mathrm{t}) / \mathrm{dt}$, is (by Newton's Law of Cooling) proportional to the difference between the temperature of the object $\mathrm{T}(\mathrm{t})$ and the ambient temperature Ta . This means that:

$$
\frac{d T(t)}{d t}=-r(T(t)-T a), \quad r-\text { positive constant characteristic of the system }
$$

The analytical solution of this differential equation:

$$
T(t)=T a+C \cdot e^{-r t}
$$

Let for $\mathrm{t}=0 \mathrm{~T}(0)=90$ and $\mathrm{r}=0.1$ and $\mathrm{Ta}=30$ then:

$$
\begin{equation*}
\frac{d T(t)}{d t}=-0.1(T(t)-30) \text { with IVP:T(0)}=90 \tag{1}
\end{equation*}
$$

And exact solution:

$$
T(t)=30+60 \cdot e^{-0.1 \cdot t}
$$

The Runge-Kutta-Fehlberg method is single-step method. This method has a procedure to determine whether the correct step size h is used. Each step requires the use of the following six values:

$$
\begin{gathered}
k_{1}=h \cdot f\left(x_{k}, y_{k}\right) \\
k_{2}=h \cdot f\left(x_{k}+\frac{1}{4} h, y_{k}+\frac{1}{4} k_{1}\right) \\
k_{3}=h \cdot f\left(x_{k}+\frac{3}{8} h, y_{k}+\frac{3}{32} k_{1}+\frac{9}{32} k_{2}\right) \\
k_{4}=h \cdot f\left(x_{k}+\frac{12}{13} h, y_{k}+\frac{1932}{2197} k_{1}-\frac{7200}{2197} k_{2}+\frac{7296}{2197} k_{3}\right) \\
k_{5}=h \cdot f\left(x_{k}+h, y_{k}+\frac{439}{216} k_{1}-8 k_{2}+\frac{3680}{513} k_{3}-\frac{845}{4104} k_{4}\right) \\
k_{6}=h \cdot f\left(x_{k}+\frac{1}{2} h, y_{k}-\frac{8}{27} k_{1}+2 k_{2}-\frac{3544}{2565} k_{3}+\frac{1859}{4104} k_{4}-\frac{11}{40} k_{5}\right)
\end{gathered}
$$

Then we calculate the approximation to the solution with the help of the method of the fourth order:

$$
w_{k+1}=y_{k}+\frac{25}{216} k_{1}+\frac{1408}{2565} k_{3}+\frac{2197}{4101} k_{4}-\frac{1}{5} k_{5}, \quad \text { Error }=O\left(h^{4}\right)
$$

And the approximation to the solution with the help of the method of the 5th order:

$$
y_{k+1}=y_{k}+\frac{16}{135} k_{1}+\frac{6656}{12825} k_{3}+\frac{28561}{56430} k_{4}-\frac{9}{50} k_{5}+\frac{2}{55} k_{6}, \quad \text { Error }=O\left(h^{5}\right)
$$

At each step, two different approximations for the solution are made and compared. The optimal step size is $(\delta \cdot h)$.

$$
R=\frac{1}{h}\left|w_{k+1}-y_{k+1}\right|, \quad \delta=\left(\frac{\varepsilon}{2 R}\right)^{\frac{1}{4}} \quad \varepsilon-\text { specified accuracy }
$$

Problem solving and error analysis:

The classical fourth-order Runge-Kutta method for computations with a constant integration step requires the calculation of four coefficients:

$$
\begin{gathered}
k_{1}=f\left(x_{k}, y_{k}\right) \\
k_{2}=f\left(x_{k}+\frac{1}{2} h, y_{k}+\frac{1}{2} k_{1}\right)
\end{gathered}
$$

$$
\begin{gathered}
k_{3}=f\left(x_{k}+\frac{1}{2} h, y_{k}+\frac{1}{2} k_{2}\right) \\
k_{4}=f\left(x_{k}+h, y_{k}+h k_{3}\right)
\end{gathered}
$$

Then we calculate the approximation to the solution with the help of the method of the fourth order:

$$
y_{k+1}=y_{k}+\frac{h}{6}\left(k_{1}+2 k_{2}+2 k_{3}+k_{4}\right)
$$

Problem solving and error analysis:
${ }_{\text {return augment }(x, y)}$
$Z:=$ Runge $4\left(y_{0}, 0.15, D\right)$

Error calculation. T - exact value AT - approximation
$|\mathrm{T}-\mathrm{AT}|=0.00000008016$

