Answer on Question \#75327 - Math - Analytic Geometry

Question

Find the coordinates of the foot of the perpendicular from $(-2,6)$ on the line $2 x+3 y-1=0$.

Solution

If $\mathrm{y}=\mathrm{kx}+\mathrm{b}$ is the equation of the perpendicular passing through $(-2,6)$, so $6=-2 \mathrm{k}+\mathrm{b} ; \mathrm{k}=(6-\mathrm{b}) /(-2)$ The equation $2 x+3 y-1=0$ given in the question is rewritten in the following form:

$$
y=-2 x / 3+1 / 3
$$

Because the two lines are perpendicular,

$$
(6-b) /(-2)=-1 /(-2 / 3)=3 / 2 ; b=9 ; k=(6-b) /(-2)=(6-9) /(-2)=3 / 2 .
$$

One gets $y=3 / 2 x+9$ is the equation of the perpendicular to the line $2 x+3 y-1=0$ passing through $(-2,6)$.

Now we find the coordinates of the foot of the perpendicular:
$-2 \mathrm{x} / 3+1 / 3=3 \mathrm{x} / 2+9 ;$
$x=-4 ; y=-2 *(-4) / 3+1 / 3=3$.
Answer: (-4, 3).

