Answer on Question \#75326 - Math - Analytic Geometry

Question

1. Obtain the equation of the line passing through $(1,-1,2)$ having direction ratios $(2,0,1)$.

Solution

The symmetric form of the equation of a line passing through a point $M\left(x_{0}, y_{0}, z_{0}\right)$ and having direction ratios a, b and c is:

$$
\begin{equation*}
\frac{x-x_{0}}{a}=\frac{y-y_{0}}{b}=\frac{z-z_{0}}{c} \tag{1}
\end{equation*}
$$

The parametric form of the equation of a line passing through a point $M\left(x_{0}, y_{0}, z_{0}\right)$ and having direction ratios a, b and c is:

$$
\left\{\begin{array}{l}
x=x_{0}+a t \tag{2}\\
y=y_{0}+b t \\
z=z_{0}+c t, \quad t \in R
\end{array}\right.
$$

Putting the values of x_{0}, y_{0}, z_{0} and a, b, c in (1) and (2) we get the equation of the line passing through $(1,-1,2)$ having direction ratios $(2,0,1)$:

$$
\frac{x-1}{2}=\frac{y+1}{0}=\frac{z-2}{1} \leftrightarrow\left\{\begin{array}{l}
x=1+2 t \\
y=-1 \\
z=2+t
\end{array}, \quad t \in R\right.
$$

Answer:

$$
\frac{x-1}{2}=\frac{y+1}{0}=\frac{z-2}{1} \leftrightarrow\left\{\begin{array}{l}
x=1+2 t \\
y=-1 \\
z=2+t
\end{array}, \quad t \in R\right.
$$

