Question \#7501 Solve $x(x+y) d y / d x=y(x-y)$.
Solution. This equation is homogeneous(it does not change when we make the substitution $x \mapsto \lambda x, y \mapsto \lambda y)$. Hence, it is reasonable to make a substitution $y=z x, y^{\prime}=z^{\prime} x+z$, thus our equation is equivalent to

$$
\frac{x}{x+x z}\left(z^{\prime} x+z\right)=\frac{z x}{x-z x}, \text { or } \frac{1}{1+z}\left(z^{\prime} x+z\right)=\frac{z}{1-z}
$$

We get $z^{\prime} \cdot x=\frac{z(1+z)}{1-z}-z=\frac{z+z^{2}-z+z^{2}}{1-z}$, finally we obtain $1 / 2 d z \frac{1-z}{z^{2}}=d x / x$. Or $1 / 2(-1 / z-\log |z|)=\log |x|+C$, returning back to initial variables $1 / 2\left(-\frac{x}{y}+\log |x|-\right.$ $\log |y|)=\log |x|+C$.
Answer. The general solution can be obtained from the relation $-\frac{x}{y}-\log |y|=\log |x|+C$, $C \in \mathbb{R}$ is arbitrary real constant.

