Question $\# 7500$ Solve $(\cos x+\log y)+d y / d x=-\left(x / y+e^{y}\right) d y / d x$.
Solution. Denote $M(x, y):=\cos +\log y, N(x, y):=x / y+e^{y}+1$. Our equation is equivalent to $(\cos x+\log y) d x+\left(x / y+e^{y}+1\right) d y=0$. Due to $\frac{\partial M(x, y)}{\partial y}=\frac{\partial N(x, y)}{\partial x}=\frac{1}{y}$ our DE is exact. Denote by $U(x, y)$ such function that $U(x, y)=0$ defines the general solution. U satisfies $\frac{\partial U}{\partial x}=\cos x+\log y$, thus $U(x, y)=\sin x+(\log y) x+\varphi(y)$. One can get $\frac{\partial U}{\partial y}=x / y+\varphi^{\prime}(y)=N(x, y)=x / y+e^{y}+1$, hence $\varphi^{\prime}(y)=e^{y}+1$, so $\varphi(y)=e^{y}+y+C$. $U(x, y)=\sin x+\log y \cdot x+e^{y}+y+C$, and the general solution is obtained from $U(x, y)=0$ Answer. The general solution $\sin x+\log y \cdot x+e^{y}+y+C=0$

