ANSWER on Question #74999 — Math — Calculus

y(x) = ematanx
Show that
(1+x2)y®™ D + 2nx — Dy™ +n(n - Dy® Y =0, vn>1
SOLUTION

Let us agree on the notation

We recall some necessary rules for taking derivatives
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( More information: https://en.wikipedia.org/wiki/Derivative )



https://en.wikipedia.org/wiki/Derivative

In our case, we derive this recurrence relation
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1+x)yCV 4+ 23 x—m)y® +3-3-1)y@ =0
Conclusion,
(14 x2)y™* ) + 2nx — m)y™ + n(n — 1)y®™ D =0
It remains to prove this relation.
We use the method of mathematical induction

1 STEP : Basis of induction

Forn =2
1+x2)yV+2-2-x-myP+2-2-1)y*V=0-
(1+x2)y® + (4x —m)y@® +2yW =0
We have already obtained this formula when we derive this recurrence relation

2 STEP : Inductive hypothesis

Suppose that the formula holds Vk: 1 <k <n
(1 +x2)y®+D + 2kx — m)y® + k(k — Dy*=Y =0

3 STEP : The inductive step

It is necessary to prove that the formulais true fork =n + 1
1+ x2)y™2D 4+ 2n+ Dx —m)y™D + n(n+ 1)y™ =0

In our case,

d
dx X‘ (1+x2)y®™D + 2nx —m)y™ + n(n - 1)y® Y =0 >
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2xy D 4 (1 + x2)y™@ D + 2n - y®™ + 2nx —m)y™Y + n(n — 1)y™ =0 -

(14 x2)y™D 4+ 2x + 2nx —m)y™™ + 2n+n(n—1))y™ =0 -



1+ x)y™*2D + 2n+ Dx —m)y®™D + n(n+1)y™ =0. Q.E.D
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