## ANSWER on Question \#74996 - Math - Calculus

2 kg of water is heated from $0^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$ and converted into steam at the same temperature. Calculate the increase in entropy, given that specific heat of water is

$$
c=4.18 \times 10^{3} \frac{\mathrm{~J}}{\mathrm{~kg} \cdot \mathrm{~K}} \rightarrow c=4180 \frac{\mathrm{~J}}{\mathrm{~kg} \cdot \mathrm{~K}}
$$

and Latent heat of vaporization is

$$
L_{\text {vaporization }}=2.27 \times 10^{7} \frac{\mathrm{~J}}{\mathrm{~kg}}
$$

## SOLUTION

Entropy is a state function defined by (per unit mass)

$$
d s=\frac{d q_{r e v}}{T}
$$

The second law defines entropy as a state function and permits the following statements:
a) For a reversible process the entropy of the universe remains constant.
b) For an irreversible process the entropy of the universe will increase.
( More information: https://en.wikipedia.org/wiki/Entropy )
In our case,
Entropy increases in other processes: 1) heating of water; 2) water transfer to steam.

$$
\Delta S=\Delta S_{1}+\Delta S_{2}
$$

Step 1: Compute the increase in entropy resulting from increasing the water temperature from $0^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$ :

Let us first translate the temperature into the absolute Kelvin scale

$$
\begin{gathered}
t_{1}=0^{\circ} \mathrm{C} \rightarrow T_{1}=(0+273) \mathrm{K}=273 \mathrm{~K} \\
t_{2}=100^{\circ} \mathrm{C} \rightarrow T_{2}=(100+273) \mathrm{K}=373 \mathrm{~K}
\end{gathered}
$$

Then,

$$
\begin{gathered}
d s=\frac{c m d T}{T} \rightarrow \int_{s_{1}}^{s_{2}} d s=\int_{T_{1}}^{T_{2}} \frac{c m d T}{T} \rightarrow \underbrace{s_{2}-s_{1}}_{\Delta S_{1}}=\left.c m \cdot \ln |T|\right|_{T_{1}} ^{T_{2}}=c m \cdot\left(\ln \left|T_{2}\right|-\ln \left|T_{1}\right|\right) \rightarrow \\
\Delta S_{1}=c m \cdot \ln \left(\frac{T_{2}}{T_{1}}\right)=4180 \frac{\mathrm{~J}}{\mathrm{~kg} \cdot \mathrm{~K}} \cdot 2 \mathrm{~kg} \cdot \ln \left(\frac{373}{273}\right)=\left(8360 \cdot \ln \left(\frac{373}{273}\right)\right) \frac{\mathrm{J}}{\mathrm{~K}} \rightarrow \\
\Delta S_{1}=\left(8360 \cdot \ln \left(\frac{373}{273}\right)\right) \frac{\mathrm{J}}{\mathrm{~K}} \approx 2609.211 \frac{\mathrm{~J}}{\mathrm{~K}}
\end{gathered}
$$

Step 2: Compute the change in entropy from conversion of 2 kg of water to steam, which involves a latent heat term. This is

$$
\begin{gathered}
\Delta S_{2}=\frac{m L_{\text {vaporization }}}{T}=\frac{2 \mathrm{~kg} \cdot 2.27 \times 10^{7} \frac{\mathrm{~J}}{\mathrm{~kg}}}{373 \mathrm{~K}}=\frac{4.54 \times 10^{7}}{373} \frac{\mathrm{~J}}{\mathrm{~K}} \approx 121715.818 \frac{\mathrm{~J}}{\mathrm{~K}} \\
\Delta S_{2}=\frac{4.54 \times 10^{7}}{373} \frac{\mathrm{~J}}{\mathrm{~K}} \approx 121715.818 \frac{\mathrm{~J}}{\mathrm{~K}}
\end{gathered}
$$

Conclusion,

$$
\begin{gathered}
\Delta S=\Delta S_{1}+\Delta S_{2} \approx 2609.211 \frac{\mathrm{~J}}{\mathrm{~K}}+121715.818 \frac{\mathrm{~J}}{\mathrm{~K}}=124325.029 \frac{\mathrm{~J}}{\mathrm{~K}} \\
\Delta S \approx 124325.029 \frac{\mathrm{~J}}{\mathrm{~K}}
\end{gathered}
$$

## ANSWER

$$
\Delta S \approx 124325.029 \frac{\mathrm{~J}}{\mathrm{~K}}
$$

Answer provided by https://www.AssignmentExpert.com

