Answer on Question \#74944 Math / Calculus

A $m=2 \mathrm{~kg}$ of water is heated from $0^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$ and converted into steam at the same temperature. Calculate the increase in entropy, given that specific heat of water is $c=$ $4.18 \times 10^{3} \mathrm{~J} \mathrm{~kg}^{-1} \mathrm{~K}^{-1}$ and Latent heat of vaporization is $L=2.27 \times 10^{7} \mathrm{~J} \mathrm{~kg}^{-1}$.

Solution:

The change of entropy

$$
\begin{gathered}
\Delta S=(\Delta S)_{\text {heating }}+(\Delta S)_{\text {vaporization }} \\
(\Delta S)_{\text {heating }}=\int_{T_{1}}^{T_{2}} \frac{\delta Q}{T}=\int_{T_{1}}^{T_{2}} \frac{c m d T}{T}=c m \ln \frac{T_{2}}{T_{1}}=4.18 \times 10^{3} \times 2 \times \ln \frac{373}{273}=2.6 \times 10^{3} \frac{\mathrm{~J}}{\mathrm{~K}} \\
(\Delta S)_{\text {vaporization }}=\frac{Q}{T_{2}}=\frac{L m}{T_{2}}=\frac{2.27 \times 10^{7} \times 2}{373}=121.7 \times 10^{3} \frac{\mathrm{~J}}{\mathrm{~K}}
\end{gathered}
$$

So

$$
\Delta S=2.6 \times 10^{3} \frac{\mathrm{~J}}{\mathrm{~K}}+121.7 \times 10^{3} \frac{\mathrm{~J}}{\mathrm{~K}}=124.3 \times 10^{3} \frac{\mathrm{~J}}{\mathrm{~K}}=124.3 \frac{\mathrm{~kJ}}{\mathrm{~K}}
$$

Answer: $124.3 \frac{\mathrm{~kJ}}{\mathrm{~K}}$
Answer provided by https://www.AssignmentExpert.com

