Answer on Question # 74943, Math-Differential Equations:

Question: Solve the following ordinary differential equation: (a) $\frac{dy}{dx} = \frac{y-x}{x-4y}$ (b) $(2yx^2+4)\frac{dy}{dx} + (2y^2x-3)=0$ (c) $y''+3y'-10y=3x^2$

Solution: (a). $\frac{dy}{dx} = \frac{y-x}{x-4y}$

This equation is exact equation i.e. write in the form M dx + N dy = 0

M = y - x and N = x - 4y

So, $\Psi = \int (N dy) = xy - 2y^2 + C$ (C is integration constant)

Now replace C with m(x), as x was treated as a constant.

$$\Psi = xy - 2y^2 + m(x)$$

Now compare the value of $\frac{\partial}{\partial x} (xy - 2y^2 + m(x))$ and (y - x)

So,
$$\frac{\partial}{\partial x} (xy - 2y^2 + m(x)) = (y - x)$$

m(x) = D (constant)
So, $\Psi = xy - 2y^2 + D$

(b).
$$(2yx^2+4)\frac{dy}{dx} + (2y^2x-3) = 0$$

This equation is in exact form i.e. $M(x, y) + N(x, y) \frac{dy}{dx} = 0$ Here, $M(x, y) = 2y^2x-3$ and $N(x, y) = 2yx^2+4$ $\Psi = \int (N dy) = 4y + x^2y^2 + c$ (c = integration constant) Now replace c with m(x), as x was treated as a constant. So, $\Psi = 4y + x^2y^2 + m(x)$

Now compare the value of $\frac{\partial}{\partial x} (4y + x^2y^2 + m(x)) = 2x y^2 - 3$ So we get, m(x) = -3x + c₁ (c₁ is another constant) So, $\Psi = 4y + x^2y^2 - 3x + c_1$

(c). y"+3y'-10y=3x²

To find complementary solution , we put y"+3y'-10y = 0(1) Solution of equation (1) becomes, $y = Ce^{2x} + De^{-5x}$ Now particular solution is $z = -3\frac{x^2}{10} - \frac{9x}{50} - \frac{57}{500}$ So, the total solution is $\Psi = y + z = Ce^{2x} + De^{-5x} - 3\frac{x^2}{10} - \frac{9x}{50} - \frac{57}{500}$ Where C and D are constants.

Answer: So, the answers are (a). $\Psi = xy - 2y^2 + D$, (b). $\Psi = 4y + x^2y^2 - 3x + c_1$, (c). $\Psi = Ce^{2x} + De^{-5x} - 3\frac{x^2}{10} - \frac{9x}{50} - \frac{57}{500}$.

Answer provided by https://www.AssignmentExpert.com