Answer on Question \# 74943, Math-Differential Equations:

Question: Solve the following ordinary differential equation:
(a) $\frac{d y}{d x}=\frac{y-x}{x-4 y}$
(b) $\left(2 y x^{2}+4\right) \frac{d y}{d x}+\left(2 y^{2} x-3\right)=0$
(c) $y^{\prime \prime}+3 y^{\prime}-10 y=3 x^{2}$

Solution: (a). $\frac{d y}{d x}=\frac{y-x}{x-4 y}$
This equation is exact equation i.e. write in the form $\mathrm{Mdx}+\mathrm{Ndy}=0$
$M=y-x$ and $N=x-4 y$
So, $\Psi=\int(N d y)=x y-2 y^{2}+C \quad$ (C is integration constant)
Now replace C with $m(x)$, as x was treated as a constant.
$\Psi=x y-2 y^{2}+m(x)$
Now compare the value of $\frac{\partial}{\partial x}\left(x y-2 y^{2}+m(x)\right)$ and $(y-x)$
So, $\frac{\partial}{\partial x}\left(x y-2 y^{2}+m(x)\right)=(y-x)$
$\mathrm{m}(\mathrm{x})=\mathrm{D}$ (constant)
So, $\Psi=x y-2 y^{2}+D$
(b). $\left(2 y x^{2}+4\right) \frac{d y}{d x}+\left(2 y^{2} x-3\right)=0$

This equation is in exact form i.e. $\mathrm{M}(\mathrm{x}, \mathrm{y})+\mathrm{N}(\mathrm{x}, \mathrm{y}) \frac{d y}{d x}=0$
Here, $M(x, y)=2 y^{2} x-3$ and $N(x, y)=2 y x^{2}+4$
$\Psi=\int(N d y)=4 y+x^{2} y^{2}+c \quad(c=i n t e g r a t i o n ~ c o n s t a n t)$
Now replace c with $\mathrm{m}(\mathrm{x})$, as x was treated as a constant.
So, $\Psi=4 y+x^{2} y^{2}+m(x)$
Now compare the value of $\frac{\partial}{\partial x}\left(4 y+x^{2} y^{2}+m(x)\right)=2 x y^{2}-3$
So we get, $m(x)=-3 x+c_{1} \quad\left(c_{1}\right.$ is another constant)
So, $\Psi=4 y+x^{2} y^{2}-3 x+c_{1}$
(c). $y^{\prime \prime}+3 y^{\prime}-10 y=3 x^{2}$

To find complementary solution, we put $y^{\prime \prime}+3 y^{\prime}-10 y=0$
Solution of equation (1) becomes, $y=C e^{2 x}+\mathrm{D} e^{-5 x}$
Now particular solution is $\mathrm{z}=-3 \frac{x^{2}}{10}-\frac{9 x}{50}-\frac{57}{500}$
So, the total solution is $\Psi=\mathrm{y}+\mathrm{z}=C e^{2 x}+\mathrm{D} e^{-5 x}-3 \frac{x^{2}}{10}-\frac{9 x}{50}-\frac{57}{500}$
Where C and D are constants.

Answer: So, the answers are (a). $\Psi=x y-2 y^{2}+D \quad,(b) . \Psi=4 y+x^{2} y^{2}-3 x+c_{1}$, (c). $\psi=C e^{2 x}+\mathrm{D} e^{-5 x}-3 \frac{x^{2}}{10}-\frac{9 x}{50}-\frac{57}{500}$.

Answer provided by https://www.AssignmentExpert.com

