Answer on question \#74912:
The area of the figure under the curve $\left\{\begin{array}{l}x=2 t-1 \\ y=t^{2}+5\end{array},-4 \leq t \leq 4\right.$ and up to X axis is equal to $165 \frac{1}{3}$.
$\left\{\begin{array}{l}x=2 t-1 \\ y=t^{2}+5\end{array},-4 \leq t \leq 4\right.$.

1) Our function is given in parametric form.
a) $\min _{t \in[-4 ; 4]} x=x(-4)=-9$;
$\max _{t \in[-4 ; 4]} x=x(4)=7$.
So that the domain of our function is $[-9,7]$.
b) $y=t^{2}+5$ so that $y \geq 5$, so that the codomain of our function is $[5 ;+\infty]$.
2) The graph of our function intersects Y-axis at
$x=2 t-1=0$;
$t=\frac{1}{2}$.
The graph of our function doesn't intersect X-axis because $y \geq 5$.
3) $\frac{d y}{d x}=\frac{y_{\prime}(t)}{x \prime(t)}=\frac{2 t}{2}=t$;

There is local minimum point at $t=0$:
$x_{\text {min }}=-1 ; y_{\text {min }}=5$.
Except that $\min _{[-9 ; 7]} y=5$.
4) $\frac{d^{2} y}{d x^{2}}=\frac{1}{2}>0$. So that our function is strict convex.
5)

6) The area of the figure under the curve $\left\{\begin{array}{l}x=2 t-1 \\ y=t^{2}+5\end{array},-4 \leq t \leq 4\right.$ and up to X-axis

$$
\begin{aligned}
& S=\int_{-9}^{7} y \cdot d x=[x=2 t-1 ; d x=2 d t ; t \epsilon[-4 ; 4]]=2 \int_{-4}^{4}\left(t^{2}+5\right) d t= \\
& 4 \int_{0}^{4}\left(t^{2}+5\right) d t=\left.4\left(\frac{t^{3}}{3}+5 t\right)\right|_{0} ^{4}=4\left(\frac{64}{3}+20\right)=165 \frac{1}{3} .
\end{aligned}
$$

Answer provided by https://www.AssignmentExpert.com

