Answer on Question \#74856 - Math - Analytic Geometry

Question

$A=5 i+7 j+8 k$
$B=5 i+2 j-5 k$
Use your understanding of vector analysis to complete the following:

1. Calculate a resultant vector, which would theoretically represent a single force that could replace the two force vectors A and B while giving the same support to the structure.
2. Calculate the modulus of all three forces.
3. Determine the value of the dot-product (scalar product) of vectors A and B
4. Calculate the angle between the vectors A and B
5. Determine the directional cosine angles of the resultant vector with respect to the x, y and z axes.

Solution

1. Resultant vector (C) of vectors A and B is the sum of those vectors:

$$
\begin{aligned}
\bar{C}=\bar{A}+\bar{B}= & (5 i+7 j+8 k)+(5 i+2 j-5 k)=(5+5) i+(7+2) j+(8-5) k \\
& =10 i+9 j+3 k
\end{aligned}
$$

2. Modulus of the vector A :

$$
|\bar{A}|=\sqrt{5^{2}+7^{2}+8^{2}}=\sqrt{25+49+64}=\sqrt{138}
$$

Modulus of the vector B :

$$
|\bar{B}|=\sqrt{5^{2}+2^{2}+(-5)^{2}}=\sqrt{25+4+25}=\sqrt{54}=3 \sqrt{6}
$$

Modulus of the vector C :

$$
|\bar{C}|=\sqrt{10^{2}+9^{2}+3^{2}}=\sqrt{100+81+9}=\sqrt{190}
$$

3. Scalar product of vectors A and B :

$$
\bar{A} \cdot \bar{B}=5 \cdot 5+7 \cdot 2+8 \cdot(-5)=25+14-40=-1
$$

4. Cosine of the angle between vectors A and $B(\theta)$:

$$
\cos \theta=\frac{\bar{A} \cdot \bar{B}}{|\bar{A}| \cdot|\bar{B}|}=\frac{-1}{\sqrt{138} \cdot 3 \sqrt{6}}=\frac{-1}{3 \sqrt{828}}=\frac{-1}{18 \sqrt{23}}
$$

Angle between vectors A and $B(\theta)$:

$$
\theta=\cos ^{-1}(\cos \theta)=\cos ^{-1} \frac{-1}{18 \sqrt{23}}=1.58238072
$$

5. Directional cosine angle of the vector C with respect to the x axis:

$$
\cos \alpha=\frac{10}{|\bar{C}|}=\frac{10}{\sqrt{190}}
$$

Directional cosine angle of the vector C with respect to the y axis:

$$
\cos \beta=\frac{9}{|\bar{C}|}=\frac{9}{\sqrt{190}}
$$

Directional cosine angle of the vector C with respect to the z axis:

$$
\cos \gamma=\frac{3}{|\bar{C}|}=\frac{3}{\sqrt{190}}
$$

Answer:

1. Resultant vector of vectors A and B :

$$
\bar{C}=10 i+9 j+3 k
$$

2. Modulus of the vector A:

$$
|\bar{A}|=\sqrt{138}
$$

Modulus of the vector B :

$$
|\bar{B}|=3 \sqrt{6}
$$

Modulus of the vector C :

$$
|\bar{C}|=\sqrt{190}
$$

3. Scalar product of vectors A and B :

$$
\bar{A} \cdot \bar{B}=-1
$$

4. Angle between vectors A and B :

$$
\theta=\cos ^{-1} \frac{-1}{18 \sqrt{23}}=1.58238072
$$

5. Directional cosine angles of the resultant vector C :
with respect to the x axis:

$$
\cos \alpha=\frac{10}{|\bar{C}|}=\frac{10}{\sqrt{190}}
$$

with respect to the y axis:

$$
\cos \beta=\frac{9}{|\bar{C}|}=\frac{9}{\sqrt{190}}
$$

with respect to the z axis:

$$
\cos \gamma=\frac{3}{|\bar{C}|}=\frac{3}{\sqrt{190}}
$$

