Answer on Question \#74823 - Math - Calculus

Question

Show that the function $u(x, t)=e^{\wedge}(-6 t) \cos 2 x$ is a solution of the one dimensional heat equation

Solution

Function $u(x, t)=e^{-6 t} \cos 2 x$.
One-dimensional heat equation:

$$
\frac{\partial u}{\partial t}=k \frac{\partial^{2} u}{\partial x^{2}}
$$

where k is called thermal diffusivity. One can find partial derivatives:

$$
\begin{gathered}
\frac{\partial u}{\partial t}=-6 e^{-6 t} \cos 2 x \\
\frac{\partial u}{\partial x}=-2 e^{-6 t} \sin 2 x \\
\frac{\partial^{2} u}{\partial x^{2}}=-4 e^{-6 t} \cos 2 x \\
-6 e^{-6 t} \cos 2 x=k \cdot\left(-4 e^{-6 t} \cos 2 x\right) \\
k=3 / 2
\end{gathered}
$$

So we can see that the function $u(x, t)$ is indeed a solution of the one-dimensional heat equation with thermal diffusivity $k=3 / 2$.

