A jogger runs from her home to a point A, which is 6 km away. For there 6 km , she begins by running at a constant speed till she reaches a hilly portion 2 km from her home. Here her speed slows down while she runs up the hill, which is a 1 km run. Then she speeds up while running down the hill. The last 2 km of the run are again at constant speed. Draw a graph to show the jogger's speed as a function of the distance from her home. Also find the range of this function.

Solution.

Let V_{1} is jogger speed at the distance from home to the hill, V_{2} is jogger speed at the distance from the hill to the point $\mathrm{A}, V_{\text {min }}$ is jogger speed at the peak of the hill.

Then we have two cases.
The first case $V_{1}>V_{2}$:

The second case $V_{1}<V_{2}$:

The range of $V(s): V_{\min } \leq V(s) \leq \max \left(V_{1}, V_{2}\right)$
Answer provided by https://www.AssignmentExpert.com

