Answer on Question \#74645 - Math - Calculus
 Question

Examine whether $\lim x$ to $0\left(e^{\wedge} 1 / x\right) /\left(e^{\wedge} 1 / x+1\right)$ exist or not..

Solution

We need to determine the existence of limit

$$
\lim _{x \rightarrow 0} \frac{e^{1 / x}}{e^{1 / x}+1}
$$

Since x can tends to both 0^{+}and 0^{-}we will examine both cases.
Let $\frac{1}{x}=y$. If x tends towards 0^{+}, then y tends towards $+\infty$ and we have

$$
\lim _{x \rightarrow 0^{+}} \frac{e^{1 / x}}{e^{1 / x}+1}=\lim _{y \rightarrow+\infty} \frac{e^{y}}{e^{y}+1}=\lim _{y \rightarrow+\infty} \frac{e^{y}}{e^{y}\left(1+e^{-y}\right)}=\lim _{y \rightarrow+\infty} \frac{1}{1+e^{-y}}=\frac{1}{1+e^{-\infty}}=\frac{1}{1+0}=1
$$

Let $\frac{1}{x}=y$. If x tends towards 0^{-}, then y tends towards $-\infty$ and we have

$$
\lim _{x \rightarrow 0^{-}} \frac{e^{1 / x}}{e^{1 / x}+1}=\lim _{y \rightarrow-\infty} \frac{e^{y}}{e^{y}+1}=\lim _{y \rightarrow-\infty} \frac{e^{y}}{e^{y}\left(1+e^{-y}\right)}=\lim _{y \rightarrow-\infty} \frac{1}{1+e^{-y}}=\frac{1}{1+e^{\infty}}=\frac{1}{1+\infty}=0
$$

Thus, the one-sided limits are not equal and therefore the limit

$$
\lim _{x \rightarrow 0} \frac{e^{1 / x}}{e^{1 / x}+1}
$$

does not exist.
Answer: the limit

$$
\lim _{x \rightarrow 0} \frac{e^{1 / x}}{e^{1 / x}+1}
$$

does not exist.

