Answer on Question #74645 – Math – Calculus

Question

Examine whether $\lim x$ to 0 $(e^1/x)/(e^1/x + 1)$ exist or not..

Solution

We need to determine the existence of limit

$$\lim_{x\to 0}\frac{e^{1/x}}{e^{1/x}+1}$$

Since x can tends to both 0^+ and 0^- we will examine both cases.

Let $\frac{1}{x} = y$. If x tends towards 0⁺, then y tends towards $+\infty$ and we have

$$\lim_{x \to 0^+} \frac{e^{1/x}}{e^{1/x} + 1} = \lim_{y \to +\infty} \frac{e^y}{e^y + 1} = \lim_{y \to +\infty} \frac{e^y}{e^y(1 + e^{-y})} = \lim_{y \to +\infty} \frac{1}{1 + e^{-y}} = \frac{1}{1 + e^{-\infty}} = \frac{1}{1 + 0} = 1$$

Let $\frac{1}{x} = y$. If x tends towards 0^- , then y tends towards $-\infty$ and we have

$$\lim_{x \to 0^-} \frac{e^{1/x}}{e^{1/x} + 1} = \lim_{y \to -\infty} \frac{e^y}{e^y + 1} = \lim_{y \to -\infty} \frac{e^y}{e^y (1 + e^{-y})} = \lim_{y \to -\infty} \frac{1}{1 + e^{-y}} = \frac{1}{1 + e^{\infty}} = \frac{1}{1 + \infty} = 0$$

Thus, the one-sided limits are not equal and therefore the limit

$$\lim_{x \to 0} \frac{e^{1/x}}{e^{1/x} + 1}$$

does not exist.

Answer: the limit

$$\lim_{x \to 0} \frac{e^{1/x}}{e^{1/x} + 1}$$

does not exist.