Answer on Question #74604 – Math – Algebra Question

Write an odd natural number as a sum of two integers m_1 and m_2 in a way that m_1m_2 is maximum.

Solution

Consider the natural odd number 2m + 1, m is given. Let $m_1 + m_2 = 2m + 1, m_1 \in \{0, 1, \dots 2m + 1\}, m_2 \in \{0, 1, \dots 2m + 1\}.$ Then $m_2 = 2m + 1 - m_1$. Consider the product m_1m_2 as the function $f(m_1)$ $f(m_1) = m_1(2m + 1 - m_1)$ Take the first derivative with respect to m_1 $f'(m_1) = (m_1(2m+1-m_1))' = 2m+1-m_1+m_1(0+0-1) =$ $= 2m + 1 - 2m_1$ Find the critical point(s) $f'(m_1) = 0 \Longrightarrow 2m + 1 - 2m_1 = 0 \Longrightarrow m_1 = m + \frac{1}{2}$ If $0 \le m_1 < m + \frac{1}{2}$, $f'(m_1) > 0$, $f(m_1)$ increases If $m + \frac{1}{2} < m_1 \le m$, $f'(m_1) < 0, f(m_1)$ decreases The function $f(m_1)$ has maximum at $m_1 = m + 1/2$. Since m_1 is integer number, then we consider $m_1 = m + 0$ or $m_1 = m + 1$ Therefore, we have that 2m + 1 = (m) + (m + 1)If M is the odd natural number, then $M = \frac{1}{2}(M-1) + \frac{1}{2}(M+1)$ The maximum of product $\frac{1}{2}(M-1)\left(\frac{1}{2}\right)(M+1) = \frac{M^2 - 1}{4}$

Answer provided by https://www.AssignmentExpert.com