Answer on Question \#74601 - Math - Discrete Mathematics Question

Show that

$$
1+\frac{1}{\sqrt{2}}+\cdots+\frac{1}{\sqrt{n}} \geq \sqrt{2} \sqrt{n-1}, \text { for } n \text { belongs to } N, n>1
$$

Solution

For any $n \geq 2$, let P_{n} be the statement that

$$
1+\frac{1}{\sqrt{2}}+\cdots+\frac{1}{\sqrt{n}} \geq \sqrt{2} \sqrt{n-1}
$$

Base case
The statement P_{2} says that

$$
\begin{gathered}
1+\frac{1}{\sqrt{2}} \geq \sqrt{2} \sqrt{2-1} \\
1+\sqrt{2}+\frac{1}{2} \geq 2 \\
\sqrt{2} \geq \frac{1}{2}
\end{gathered}
$$

which is true.

Inductive case

Fix $k>2$, and suppose that P_{k} holds, that is,

$$
1+\frac{1}{\sqrt{2}}+\cdots+\frac{1}{\sqrt{k}} \geq \sqrt{2} \sqrt{k-1}
$$

It remains to show that P_{k+1} holds, that is, that
$1+\frac{1}{\sqrt{2}}+\cdots+\frac{1}{\sqrt{k}}+\frac{1}{\sqrt{k+1}} \geq \sqrt{2} \sqrt{k+1-1}$
By $P_{k}, 1+\frac{1}{\sqrt{2}}+\cdots+\frac{1}{\sqrt{k}} \geq \sqrt{2} \sqrt{k-1}$
$1+\frac{1}{\sqrt{2}}+\cdots+\frac{1}{\sqrt{k}}+\frac{1}{\sqrt{k+1}} \geq \sqrt{2} \sqrt{k-1}+\frac{1}{\sqrt{k+1}}$
Let
$\sqrt{2} \sqrt{k-1}+\frac{1}{\sqrt{k+1}} \geq \sqrt{2} \sqrt{k+1-1}$
Then
$2(k-1)+2 \frac{\sqrt{2} \sqrt{k-1}}{\sqrt{k+1}}+\frac{1}{k+1} \geq 2 k$
Show that
$2 \frac{\sqrt{2} \sqrt{k-1}}{\sqrt{k+1}} \geq 2$
$\sqrt{2} \sqrt{k-1} \geq \sqrt{k+1}$
$2 k-2 \geq k+1$
$k \geq 3$
Hence
$2 \frac{\sqrt{2} \sqrt{k-1}}{\sqrt{k+1}}+\frac{1}{k+1}>2 \frac{\sqrt{2} \sqrt{k-1}}{\sqrt{k+1}} \geq 2$, for $k \geq 3$
Therefore, P_{k+1} holds.
Thus by the principle of mathematical induction, for all $n \geq 1, P_{n}$ holds

$$
1+\frac{1}{\sqrt{2}}+\cdots+\frac{1}{\sqrt{n}} \geq \sqrt{2} \sqrt{n-1}, \quad n \text { belongs to } N, n>1
$$

