Answer on Question \#74598 - Math - Linear Algebra
 Question

Give example, with justification, of the following:
(1) two non-zero, 3×3 matrices A and B, with $|A|=0,|B|=\frac{5}{7} i$;

Solution

Let's consider the following non-zero matrices (all elements of zero- matrix are zeroes)
$A=\left(\begin{array}{lll}1 & 1 & 1 \\ 2 & 2 & 2 \\ 1 & 2 & 3\end{array}\right), B=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & i & 2 \\ 0 & \frac{i}{7} & 1\end{array}\right)$
$|A|=\operatorname{det}(A)=\left|\begin{array}{lll}1 & 1 & 1 \\ 2 & 2 & 2 \\ 1 & 2 & 3\end{array}\right|=0$ because the matrix A has linearly
dependent rows: $(2 ; 2 ; 2)=2 \cdot(1 ; 1 ; 1)$.
$|B|=\left|\begin{array}{lll}1 & 0 & 0 \\ 0 & i & 2 \\ 0 & \frac{i}{7} & 1\end{array}\right|=1 \cdot\left|\begin{array}{ll}i & 2 \\ \frac{i}{7} & 1\end{array}\right|=i-\frac{2 i}{7}=i\left(1-\frac{2}{7}\right)=\frac{5}{7} i$.

Question

Give example, with justification, of the following:
(2) two non-singular 2×2 matrices C and D, with $|C|=\sqrt{2} \cdot|D|$.

Solution

Let's consider the following non-singular matrices (the determinant of a singular matrix is equal to zero)
$D=\left(\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right), C=\left(\begin{array}{cc}2 \sqrt{2} & 1 \\ \sqrt{2} & 1\end{array}\right)$.
$|D|=\left|\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right|=2-1=1 ;|C|=\left|\begin{array}{cc}2 \sqrt{2} & 1 \\ \sqrt{2} & 1\end{array}\right|=2 \sqrt{2}-\sqrt{2}=\sqrt{2} ;$

So $|C|=\sqrt{2} \cdot|D|$.
Answer:
Example (1): $A=\left(\begin{array}{lll}1 & 1 & 1 \\ 2 & 2 & 2 \\ 1 & 2 & 3\end{array}\right), B=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & i & 2 \\ 0 & \frac{i}{7} & 1\end{array}\right)$.

$$
\text { Example (2): } D=\left(\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right), C=\left(\begin{array}{cc}
2 \sqrt{2} & 1 \\
\sqrt{2} & 1
\end{array}\right) .
$$

