Question

Apply De Moivre's Theorem to write $(\sqrt{3} + i)^5$ in the form a+ib, with a, b belongs to R.

Solution

Showing the polar form of $\sqrt{3} + i$ is $2(\cos \pi/6 + i \sin \pi/6)$. Thus we have

$$(\sqrt{3} + i)^5 = [2(\cos \pi/6 + i \sin \pi/6)]^5$$
$$= 2^5(\cos \pi/6 + i \sin \pi/6)^5$$
$$= 32(\cos 5\pi/6 + i \sin 5\pi/6)$$
$$= 32(-\sqrt{3}/2 + 1/2 i)$$
$$= -16\sqrt{3} + 16 i.$$

Answer: $-16\sqrt{3} + 16$ i

Answer provided by https://www.AssignmentExpert.com