Answer on Question \#74242 - Math - Quantitative Methods

Question

For $\mathrm{h}=0.5, .25, .125$ solve integration from $\int_{0}^{1} \frac{1}{1+x^{2}} d x$ and improve the accuracy by Romberg integration. Compare your value with the real value.

Solution

Evaluate an integral $\int_{0}^{1} \frac{1}{1+x^{2}} d x$ and improve the accuracy by Romberg integration. We begin by using the Trapezoidal Rule, or, equivalently, the Composite Trapezoidal Rule

$$
\int_{a}^{b} f(x) d x \approx \frac{h}{2}\left[f_{0}+2 \sum_{i=1}^{N-1} f_{i}+f_{N}\right], h=\frac{b-a}{N}, x_{i}=x_{0}+i h, x_{0}=a, x_{N}=b
$$

We get

$$
\mathrm{N}=1, \mathrm{~h}=1, I_{T}=\frac{h}{2}\left[f_{0}+f_{1}\right]=0.750000 .
$$

$\mathrm{N}=2, \mathrm{~h}=\frac{1}{2}, I_{T}=\frac{h}{2}\left[f_{0}+2 f_{1}+f_{2}\right]=0.775000$
$\mathrm{N}=4, \mathrm{~h}=\frac{1}{4}, I_{T}=\frac{h}{2}\left[f_{0}+2 f_{1}+2 f_{2}+2 f_{3}+f_{4}\right]=0.782794$
$\mathrm{N}=8, \mathrm{~h}=\frac{1}{8}, I_{T}=\frac{h}{2}\left[f_{0}+2 f_{1}+2 f_{2}+2 f_{3}+2 f_{4}+2 f_{5}+2 f_{6}+2 f_{7}+f_{8}\right]=0.784752$
$\mathrm{N}=8, \mathrm{~h}=\frac{1}{8}$,
$I_{T}=\frac{h}{2}\left[\begin{array}{l}f_{0}+2 f_{1}+2 f_{2}+2 f_{3}+2 f_{4}+2 f_{5}+2 f_{6}+2 f_{7}+2 f_{8}+2 f_{9}+2 f_{10} \\ +2 f_{11}+2 f_{12}+2 f_{13}+2 f_{14}+2 f_{15}+f_{16}\end{array}\right]=0.785452$
Exact solution of the given integral is as follows:
$\int_{0}^{1} \frac{1}{1+x^{2}} d x=\left[\tan ^{-1} x\right]_{0}^{1}=\tan ^{-1} 1-\tan ^{-1} 0=0.785398$ in radians.
Compare. Approximate value is 0.785452 when $\mathrm{h}=1 / 16$ and the real value is 0.785398 .

Using trapezoidal rule with Romberg integration to achieve the accuracy of 10^{-6} $R_{1}=\frac{h^{2}}{12} f^{\prime \prime}(\xi), \quad 0<\xi<1$

Since $f(x)=\frac{1}{1+x^{2}}$ for $0 \leq x \leq 1$ For achieving accuracy of 10^{-6}, we require $\mathrm{h}=0.007$. hence at least (1-0)/0.007=144 function evaluations to achieve this accuracy if trapezoidal rule is used directly.

