
Answer on Question #74059 – Math – Differential Equations 

Question 

A tightly stretched string with fixed end points x=0 and x=1 is initially in a position given by
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Solution 

The equation of the string is  )1(
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Let y = X(x)T(t)   

X is a function of x and T is the function of t. 
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Similarly we calculate  
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Putting into equation (1), we get 
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Using by separation of variable we solve these two cases separately 
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General solution of equation (3) and put into equation (1) 
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Given boundary conditions are 
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Appling boundaries conditions in equation (3*) 
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Equation (3*) will become  )sin)(sincos(),( 421 pxCcptCcptCtxy            (5) 

Again 0),( tly )sin)(sincos(),( 421 plCcptCcptCtxy                      
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Hence from (5)  )sin)(sincos(),( 421
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At t=0 
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Hence  
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Most general solution is  
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Comparing and we get 
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Finally equation (6) will be  
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which is the required displacement. 
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