Answer on Question \#74057 - Math - Differential Equations Question

1. A certain population is known to be growing at a rate given by the logistic equation $\frac{d x}{d t}=x(b-a x)$. Show that the minimum rate of growth will occur when the population is equal to half the equilibrium size, that is when the population is $\frac{b}{2 a}$.

Solution

Let's find the minimum rate of growth, so the function $x(b-a x)$ should be minimized. The derivative of the rate must be zero:

$$
\begin{gathered}
\frac{d\left(b x-a x^{2}\right)}{d x}=0 \\
b-2 a x=0 \\
x=\frac{b}{2 a}
\end{gathered}
$$

$\frac{d^{2}\left(b x-a x^{2}\right)}{d x^{2}}=-2 a<0$ if $a>0$, hence in this case we get a maximum; $\frac{d^{2}\left(b x-a x^{2}\right)}{d x^{2}}=-2 a>0$ if $a<0$, hence in this case we get a minimum. Such a population x is equal to half the equilibrium size.

Answer: the minimum rate of growth will occur when population is $\frac{b}{2 a}$.

