Answer on Question \#74014 - Math - Quantitative Methods

Question

For the linear system of equations [12-2,111, 221$][x$ y z $]=\left[\begin{array}{lll}1 & 3 & 5\end{array}\right]$ set up the gauss - jacobi and gauss - seidel iteration schemes in matrix form. also check the convergence of the two schemes.

Solution

Consider a system of linear equations $\mathrm{Au}=\mathrm{b}$ with

$$
A=\left[\begin{array}{ccc}
1 & 2 & -2 \\
1 & 1 & 1 \\
2 & 2 & 1
\end{array}\right], u=\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right], b=\left[\begin{array}{l}
1 \\
3 \\
5
\end{array}\right]
$$

1. The matrix form of Jacobi iterative method is

$$
u^{k+1}=D^{-1}\left(b-R u^{k}\right)
$$

where $u(k)$ is the k th approximation or iteration of u and $u(k+1)$ is the next or $k+1$ iteration of u and $A=D+R$.

$$
\begin{gathered}
A=\left[\begin{array}{ccc}
1 & 2 & -2 \\
1 & 1 & 1 \\
2 & 2 & 1
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]+\left[\begin{array}{ccc}
0 & 2 & -2 \\
1 & 0 & 1 \\
2 & 2 & 0
\end{array}\right] \\
D=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]=D^{-1}, \quad R=\left[\begin{array}{ccc}
0 & 2 & -2 \\
1 & 0 & 1 \\
2 & 2 & 0
\end{array}\right]
\end{gathered}
$$

The convergence condition is: $\rho(\mathrm{B})<1$ where $B=D^{-1} R$ and $\rho(B)=\max \left\{\left|l_{1}\right|,\left|l_{2}\right|,\left|l_{3}\right|\right\}$, I1,I2,I3 - eigenvalues of a matrix B.

$$
\begin{gathered}
l_{1,2,3}=\left[\begin{array}{c}
0.000005+0.000009 i \\
0.000005-0.000009 i \\
-0.000011
\end{array}\right] \rightarrow \max \left\{\left|l_{1}\right|,\left|l_{2}\right|,\left|l_{3}\right|\right\}=0.000011<1 \\
u^{k+1}=D^{-1}\left(b-R u^{k}\right)=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left(\left[\begin{array}{l}
1 \\
3 \\
5
\end{array}\right]-\left[\begin{array}{ccc}
0 & 2 & -2 \\
1 & 0 & 1 \\
2 & 2 & 0
\end{array}\right] \cdot u^{k}\right) \\
=\left[\begin{array}{l}
1 \\
3 \\
5
\end{array}\right]-\left[\begin{array}{ccc}
0 & 2 & -2 \\
1 & 0 & 1 \\
2 & 2 & 0
\end{array}\right] \cdot\left[\begin{array}{c}
x^{k} \\
y^{k} \\
z^{k}
\end{array}\right]=\left[\begin{array}{c}
1-2 y^{k}+2 z^{k} \\
3-x^{k}-z^{k} \\
5-2 x^{k}-2 y^{k}
\end{array}\right]
\end{gathered}
$$

2. The matrix form of gauss - seidel iterative method is

$$
u^{k+1}=L^{-1}\left(b-M u^{k}\right)
$$

where $u(k)$ is the k th approximation or iteration of u and $u(k+1)$ is the next or $k+1$ iteration of u and $A=L+M$.

$$
\begin{gathered}
A=\left[\begin{array}{ccc}
1 & 2 & -2 \\
1 & 1 & 1 \\
2 & 2 & 1
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
1 & 1 & 0 \\
2 & 2 & 1
\end{array}\right]+\left[\begin{array}{ccc}
0 & 2 & -2 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right] \\
L=\left[\begin{array}{lll}
1 & 0 & 0 \\
1 & 1 & 0 \\
2 & 2 & 1
\end{array}\right], L^{-1}=\left[\begin{array}{rcc}
1 & 0 & 0 \\
-1 & 1 & 0 \\
0 & -2 & 1
\end{array}\right], M=\left[\begin{array}{ccc}
0 & 2 & -2 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

The convergence condition is: $\rho(\mathrm{B})<1$ where $B=L^{-1} M$ and $\rho(B)=\max \left\{\left|l_{1}\right|,\left|l_{2}\right|,\left|l_{3}\right|\right\}$, I1,I2,I3 - eigenvalues of a matrix B.

$$
\begin{gathered}
l_{1,2,3}=\left[\begin{array}{c}
0 \\
-2 \\
-2
\end{array}\right] \rightarrow \max \left\{\left|l_{1}\right|,\left|l_{2}\right|,\left|l_{3}\right|\right\}=2>1 \\
u^{k+1}=L^{-1}\left(b-M u^{k}\right)=\left[\begin{array}{ccc}
1 & 0 & 0 \\
-1 & 1 & 0 \\
0 & -2 & 1
\end{array}\right]\left(\left[\begin{array}{l}
1 \\
3 \\
5
\end{array}\right]-\left[\begin{array}{ccc}
0 & 2 & -2 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right] \cdot u^{k}\right) \\
=\left[\begin{array}{rcc}
1 & 0 & 0 \\
-1 & 1 & 0 \\
0 & -2 & 1
\end{array}\right]\left[\begin{array}{c}
1-2 y^{k}+2 z^{k} \\
3-z^{k} \\
5
\end{array}\right]=\left[\begin{array}{c}
1-2 y^{k}+2 z^{k} \\
2+2 y^{k}-3 z^{k} \\
2 z^{k}-1
\end{array}\right]
\end{gathered}
$$

Answer:

1. jacobi scheme: $\left[\begin{array}{l}x^{k+1} \\ y^{k+1} \\ z^{k+1}\end{array}\right]=\left[\begin{array}{c}1-2 y^{k}+2 z^{k} \\ 3-x^{k}-z^{k} \\ 5-2 x^{k}-2 y^{k}\end{array}\right]$, the convergence condition is satisfied
2. gauss - seidel scheme: $\left[\begin{array}{c}x^{k+1} \\ y^{k+1} \\ z^{k+1}\end{array}\right]=\left[\begin{array}{c}1-2 y^{k}+2 z^{k} \\ 2+2 y^{k}-3 z^{k} \\ 2 z^{k}-1\end{array}\right]$, the convergence condition is not satisfied
