

Answer on Question #74014 – Math – Quantitative Methods

Question

For the linear system of equations $[1 \ 2 \ -2, 1 \ 1 \ 1, 2 \ 2 \ 1][x \ y \ z] = [1 \ 3 \ 5]$ set up the gauss - jacobi and gauss - seidel iteration schemes in matrix form. also check the convergence of the two schemes.

Solution

Consider a system of linear equations $Au = b$ with

$$A = \begin{bmatrix} 1 & 2 & -2 \\ 1 & 1 & 1 \\ 2 & 2 & 1 \end{bmatrix}, u = \begin{bmatrix} x \\ y \\ z \end{bmatrix}, b = \begin{bmatrix} 1 \\ 3 \\ 5 \end{bmatrix}$$

1. The matrix form of Jacobi iterative method is

$$u^{k+1} = D^{-1}(b - Ru^k)$$

where $u(k)$ is the k th approximation or iteration of u and $u(k+1)$ is the next or $k+1$ iteration of u and $A=D+R$.

$$A = \begin{bmatrix} 1 & 2 & -2 \\ 1 & 1 & 1 \\ 2 & 2 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} + \begin{bmatrix} 0 & 2 & -2 \\ 1 & 0 & 1 \\ 2 & 2 & 0 \end{bmatrix}$$

$$D = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = D^{-1}, \quad R = \begin{bmatrix} 0 & 2 & -2 \\ 1 & 0 & 1 \\ 2 & 2 & 0 \end{bmatrix}$$

The convergence condition is: $\rho(B) < 1$ where $B = D^{-1}R$ and $\rho(B) = \max\{|l_1|, |l_2|, |l_3|\}$, $|l_1|, |l_2|, |l_3|$ - eigenvalues of a matrix B .

$$l_{1,2,3} = \begin{bmatrix} 0.000005 + 0.000009i \\ 0.000005 - 0.000009i \\ -0.000011 \end{bmatrix} \rightarrow \max\{|l_1|, |l_2|, |l_3|\} = 0.000011 < 1$$

$$u^{k+1} = D^{-1}(b - Ru^k) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \left(\begin{bmatrix} 1 \\ 3 \\ 5 \end{bmatrix} - \begin{bmatrix} 0 & 2 & -2 \\ 1 & 0 & 1 \\ 2 & 2 & 0 \end{bmatrix} \cdot u^k \right)$$

$$= \begin{bmatrix} 1 \\ 3 \\ 5 \end{bmatrix} - \begin{bmatrix} 0 & 2 & -2 \\ 1 & 0 & 1 \\ 2 & 2 & 0 \end{bmatrix} \cdot \begin{bmatrix} x^k \\ y^k \\ z^k \end{bmatrix} = \begin{bmatrix} 1 - 2y^k + 2z^k \\ 3 - x^k - z^k \\ 5 - 2x^k - 2y^k \end{bmatrix}$$

2. The matrix form of gauss – seidel iterative method is

$$u^{k+1} = L^{-1}(b - Mu^k)$$

where $u(k)$ is the k th approximation or iteration of u and $u(k+1)$ is the next or $k+1$ iteration of u and $A=L+M$.

$$A = \begin{bmatrix} 1 & 2 & -2 \\ 1 & 1 & 1 \\ 2 & 2 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 2 & 2 & 1 \end{bmatrix} + \begin{bmatrix} 0 & 2 & -2 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

$$L = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 2 & 2 & 1 \end{bmatrix}, L^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & -2 & 1 \end{bmatrix}, M = \begin{bmatrix} 0 & 2 & -2 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

The convergence condition is: $\rho(B) < 1$ where $B = L^{-1}M$ and $\rho(B) = \max\{|l_1|, |l_2|, |l_3|\}$, $|l_1, l_2, l_3$ - eigenvalues of a matrix B .

$$l_{1,2,3} = \begin{bmatrix} 0 \\ -2 \\ -2 \end{bmatrix} \rightarrow \max\{|l_1|, |l_2|, |l_3|\} = 2 > 1$$

$$u^{k+1} = L^{-1}(b - Mu^k) = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & -2 & 1 \end{bmatrix} \left(\begin{bmatrix} 1 \\ 3 \\ 5 \end{bmatrix} - \begin{bmatrix} 0 & 2 & -2 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} \cdot u^k \right)$$

$$= \begin{bmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & -2 & 1 \end{bmatrix} \begin{bmatrix} 1 - 2y^k + 2z^k \\ 3 - x^k - z^k \\ 5 - 2x^k - 2y^k \end{bmatrix} = \begin{bmatrix} 1 - 2y^k + 2z^k \\ 2 + 2y^k - 3z^k \\ 2z^k - 1 \end{bmatrix}$$

Answer:

1. jacobi scheme: $\begin{bmatrix} x^{k+1} \\ y^{k+1} \\ z^{k+1} \end{bmatrix} = \begin{bmatrix} 1 - 2y^k + 2z^k \\ 3 - x^k - z^k \\ 5 - 2x^k - 2y^k \end{bmatrix}$, the convergence condition is satisfied

2. gauss - seidel scheme: $\begin{bmatrix} x^{k+1} \\ y^{k+1} \\ z^{k+1} \end{bmatrix} = \begin{bmatrix} 1 - 2y^k + 2z^k \\ 2 + 2y^k - 3z^k \\ 2z^k - 1 \end{bmatrix}$, the convergence condition is not satisfied