Answer on Question \#74012 - Math - Quantitative Methods

Question

find the dominant eigenvalue and the corresponding eigenvector for the matrix $A=\left(\begin{array}{ccc}-4 & 14 & 0 \\ -5 & 13 & 0 \\ -1 & 0 & 2\end{array}\right)$ using five iterations of the power method and taking $y(0)=\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$ as the initial vector.

Solution

We begin with an initial non-zero approximation of dominant eigenvector x_{0} as $x_{0}=\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$ and we obtain the following approximations as

$$
x_{1}=A \tilde{x}_{1}=\left(\begin{array}{lcc}
-4 & 14 & 0 \\
-5 & 13 & 0 \\
-1 & 0 & 2
\end{array}\right)\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)=\left(\begin{array}{c}
10 \\
8 \\
1
\end{array}\right)=10\left(\begin{array}{c}
1 \\
0.8 \\
0.1
\end{array}\right)
$$

We take out the largest element of the resultant matrix and will be our new initial vector. Proceeding in this manner we obtain a series of approximations as follows:

$$
\begin{aligned}
& x_{2}=A \tilde{x}_{2}=\left(\begin{array}{lll}
-4 & 14 & 0 \\
-5 & 13 & 0 \\
-1 & 0 & 2
\end{array}\right)\left(\begin{array}{c}
1 \\
0.8 \\
0.1
\end{array}\right)=\left(\begin{array}{c}
7.2 \\
5.4 \\
-0.8
\end{array}\right)=7.2\left(\begin{array}{c}
1 \\
0.75 \\
-0.11
\end{array}\right) \\
& x_{3}=A \widetilde{x}_{3}=\left(\begin{array}{lll}
-4 & 14 & 0 \\
-5 & 13 & 0 \\
-1 & 0 & 2
\end{array}\right)\left(\begin{array}{c}
1 \\
0.75 \\
-0.11
\end{array}\right)=\left(\begin{array}{c}
6.5 \\
4.75 \\
-1.22
\end{array}\right)=6.5\left(\begin{array}{c}
1 \\
0.730 \\
-0.187
\end{array}\right) \\
& x_{4}=A \widetilde{x}_{4}=\left(\begin{array}{lll}
-4 & 14 & 0 \\
-5 & 13 & 0 \\
-1 & 0 & 2
\end{array}\right)\left(\begin{array}{c}
1 \\
0.730 \\
-0.187
\end{array}\right)=\left(\begin{array}{c}
6.22 \\
4.49 \\
-1.37
\end{array}\right)=6.22\left(\begin{array}{c}
1 \\
0.7218 \\
-0.2202
\end{array}\right) \\
& x_{5}=A \tilde{x}_{5}=\left(\begin{array}{lll}
-4 & 14 & 0 \\
-5 & 13 & 0 \\
-1 & 0 & 2
\end{array}\right)\left(\begin{array}{c}
1 \\
0.7218 \\
-0.2202
\end{array}\right)=\left(\begin{array}{c}
6.1052 \\
4.3834 \\
-1.4404
\end{array}\right)=6.1052\left(\begin{array}{c}
1 \\
0.7179 \\
-0.2359
\end{array}\right)
\end{aligned}
$$

$x_{6}=A \widetilde{x}_{6}=\left(\begin{array}{lcc}-4 & 14 & 0 \\ -5 & 13 & 0 \\ -1 & 0 & 2\end{array}\right)\left(\begin{array}{c}1 \\ 0.7179 \\ -0.2359\end{array}\right)=\left(\begin{array}{c}6.05 \\ 4.33 \\ -1.47\end{array}\right)=6.05\left(\begin{array}{c}1 \\ 0.715 \\ -0.242\end{array}\right)$
Therefore, the dominant eigen-value is approximately 6.05 and the corresponding eigenvector is $\left(\begin{array}{c}1 \\ 0.715 \\ -0.242\end{array}\right)$.

