Answer on Question \#73894 - Math - Quantitative Methods

Question

Find the inverse of the matrix $A=[1-11,1-24,122]$ by gauss Jordan method.

Solution

$$
\text { 2) } a_{2 j}^{1}=a_{2 j}-a_{1 j}^{1} a_{21}, \ldots, a_{n j}^{1}=a_{n j}-a_{1 j}^{1} a_{n 1}
$$

$$
b_{2 j}^{1}=b_{2 j}-b_{1 j}^{1} a_{21}, \ldots, b_{n j}^{1}=b_{n j}-b_{1 j}^{1} a_{n 1}
$$

$$
A=\begin{array}{ccc}
1 & -1 & 1 \\
0 & -1 & 3 \\
0 & 3 & 1
\end{array} \quad I=\begin{array}{ccc}
1 & 0 & 0 \\
-1 & 1 & 0 \\
-1 & 0 & 1
\end{array}
$$

$$
\text { 3) } a_{2 j}^{1}=\frac{a_{2 j}}{a_{22}} \quad a_{i j}^{1}=a_{i j}-a_{2 j}^{1} a_{i 2}
$$

$$
b_{2 j}^{1}=\frac{b_{2 s}^{2 z}}{a_{22}} \quad b_{i j}^{1}=b_{2 j}-b_{i j}^{1} a_{i 2}
$$

$$
A=\begin{array}{ccc}
1 & -1 & 1 \\
0 & -1 & 3 \\
0 & 0 & 10
\end{array} \quad I=\begin{array}{ccc}
1 & 0 & 0 \\
1 & -1 & 0 \\
-4 & 3 & 1
\end{array}
$$

$$
\text { 4) } a_{3 j}^{1}=\frac{a_{3 j}}{a_{33}} \quad a_{i j}^{1}=a_{i j}-a_{3 j}^{1} a_{i 3}
$$

$$
b_{3 j}^{1}=\frac{b_{3 s}}{a_{33}} \quad b_{i j}^{1}=b_{i j}-b_{3 j}^{1} a_{i 3}
$$

$$
A=\begin{array}{ccc}
1 & -1 & 1 \\
0 & 1 & 3 \\
0 & 0 & 1
\end{array} \quad I=\begin{array}{ccc}
1 & 0 & 0 \\
1 & -1 & 0 \\
-0.4 & 0.3 & 0.1
\end{array}
$$

$$
\text { 5) } a_{i j}^{1}=a_{i j}-a_{3 j} a_{i 3}
$$

$$
b_{i j}^{1}=b_{i j}-b_{3 j} a_{i 3}
$$

$$
A=\begin{array}{ccc}
1 & -1 & 0 \\
0 & 1 & 0
\end{array} \quad I=\begin{array}{ccc}
1.4 & -0.3 & -0.1 \\
0 & 0 & 1
\end{array} \quad-0.2 \begin{gathered}
-0.1 \\
-0.4
\end{gathered} 0.3 \begin{aligned}
& 0.3
\end{aligned}
$$

6) $a_{i j}^{1}=a_{i j}-a_{2 j} a_{i 2}$

$$
b_{i j}^{1}=b_{i j}-b_{2 j} a_{i 2}
$$

$$
\begin{aligned}
& A=\begin{array}{ccc}
1 & -1 & 1 \\
1 & -2 & 4 \\
1 & 2 & 2
\end{array} \quad I=\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array} \\
& \text { 1) } a_{1 j}^{1}=\frac{a_{1 j}}{a_{11}} ; \quad b_{1 j}^{1}=\frac{b_{1 s}}{a_{11}} \\
& A=\begin{array}{ccc}
1 & -1 & 1 \\
1 & -2 & 4 \\
1 & 2 & 2
\end{array} \quad I=\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}
\end{aligned}
$$

$$
A=\begin{array}{llll}
1 & 0 & 0 & I=\begin{array}{ccc}
1.2 & -0.4 & 0.2 \\
0 & 1 & 0
\end{array} \\
0 & 0 & 1 & -0.2 \\
-0.1 & 0.3 \\
-0.4 & 0.3 & 0.1
\end{array}
$$

I - inverse of the matrix [1-1 1; 1-24; 12 2]

