Answer on Question \#73856 - Math - Linear Algebra

Question

Find the inverse of the matrix $A=\left[\begin{array}{ccc}1 & -1 & 1 \\ 1 & -2 & 4 \\ 1 & 2 & 2\end{array}\right]$ by Gauss - Jordan method.

Solution

Take two matrices: A and the identity $I=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$. Reduce the matrix A to the identity matrix by the Gauss-Jordan method. After applying each operation to the first matrix, we apply the same operation to the second one. When the reduction of the first matrix to a single form is completed, the second matrix will be equal to A^{-1}.
Step 1. Subtract the first line from the second.

$$
A=\left[\begin{array}{ccc}
1 & -1 & 1 \\
0 & -1 & 3 \\
1 & 2 & 2
\end{array}\right] ; I=\left[\begin{array}{ccc}
1 & 0 & 0 \\
-1 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] .
$$

Step 2. Subtract the first line from the third.

$$
A=\left[\begin{array}{ccc}
1 & -1 & 1 \\
0 & -1 & 3 \\
0 & 3 & 1
\end{array}\right] ; I=\left[\begin{array}{ccc}
1 & 0 & 0 \\
-1 & 1 & 0 \\
-1 & 0 & 1
\end{array}\right] .
$$

Step 3. Multiply the second line by -1 and third line by $\frac{1}{3}$.
$A=\left[\begin{array}{ccc}1 & -1 & 1 \\ 0 & 1 & -3 \\ 0 & 1 & \frac{1}{3}\end{array}\right] ; I=\left[\begin{array}{ccc}1 & 0 & 0 \\ 1 & -1 & 0 \\ -\frac{1}{3} & 0 & \frac{1}{3}\end{array}\right]$.
Step 4. Subtract the second line from the third.

$$
A=\left[\begin{array}{ccc}
1 & -1 & 1 \\
0 & 1 & -3 \\
0 & 0 & 3 \frac{1}{3}
\end{array}\right] ; I=\left[\begin{array}{ccc}
1 & 0 & 0 \\
1 & -1 & 0 \\
-\frac{4}{3} & 1 & \frac{1}{3}
\end{array}\right] .
$$

Step 5. Multiply the third line by $\frac{3}{10}$.

$$
A=\left[\begin{array}{ccc}
1 & -1 & 1 \\
0 & 1 & -3 \\
0 & 0 & 1
\end{array}\right] ; I=\left[\begin{array}{ccc}
1 & 0 & 0 \\
1 & -1 & 0 \\
-\frac{4}{10} & \frac{3}{10} & \frac{1}{10}
\end{array}\right] .
$$

Step 6. Subtract the third line, multiplied by -3 , from the second.
$A=\left[\begin{array}{ccc}1 & -1 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right] ; I=\left[\begin{array}{ccc}1 & 0 & 0 \\ -\frac{2}{10} & -\frac{1}{10} & \frac{3}{10} \\ -\frac{4}{10} & \frac{3}{10} & \frac{1}{10}\end{array}\right]$.
Step 7. Subtract the second line, multiplied by -1 and the third line from the first.
$A=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right] ; I=\left[\begin{array}{ccc}\frac{12}{10} & -\frac{4}{10} & \frac{2}{10} \\ -\frac{2}{10} & -\frac{1}{10} & \frac{3}{10} \\ -\frac{4}{10} & \frac{3}{10} & \frac{1}{10}\end{array}\right]=A^{-1}$.
Answer: $A^{-1}=\left[\begin{array}{ccc}1.2 & -0.4 & 0.2 \\ -0.2 & -0.1 & 0.3 \\ -0.4 & 0.3 & 0.1\end{array}\right]$.

