Answer on Question \#73853 - Math - Quantitative Methods Question

Estimate the eigenvalues of the matrix

$$
\left(\begin{array}{ccc}
1 & -2 & 3 \\
6 & -13 & 18 \\
4 & -10 & 14
\end{array}\right)
$$

using the Gershgorin bounds. Draw a rough sketch of the region where the eigenvalues lie.

Solution

Gershgorin circle theorem: Every eigenvalue of a square matrix lies in at least one of the Gershgorin discs C_{i}. The possible range of the eigenvalues is defined by the outer borders of the union of all discs

$$
C=\bigcup_{i=1}^{n} C_{i}
$$

where

$$
\begin{gathered}
C_{i}=\left\{\left|c-a_{i i}\right| \leq r_{i}\right\} \\
r_{i}=\sum_{\substack{j=1 \\
j \neq i}}^{n}\left|a_{i j}\right|
\end{gathered}
$$

There are three Gershgorin discs in this matrix:
C_{1} with the centre point $a_{11}=1$ and radius $r_{1}=2+3=5$
C_{2} with the centre point $a_{22}=-13$ and radius $r_{2}=6+18=24$
C_{3} with the centre point $a_{33}=14$ and radius $r_{3}=4+14=18$

Answer: region where the eigenvalues lie:

$$
C_{1} \cup C_{2} \cup C_{3}
$$

