Answer on Question \#73836 - Math - Calculus

Given: $f(x)=4 x^{2}+7 x+6$

To Find: Find the derivative by using definition at $\mathrm{x}=1$.
Solution: The given function is $\quad f(x)=4 x^{2}+7 x+6$
Derivative by definition at a point $x=a$ is given by

$$
\begin{aligned}
f^{\prime}(a) & =\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h} \\
\Rightarrow \quad \text { At x=1, } \quad f(1+h) & =4(1+h)^{2}+7(1+h)+6 \\
& =4\left(1+h^{2}+2 h\right)+7+7 h+6 \\
& =4 h^{2}+15 h+17
\end{aligned}
$$

and

$$
\begin{aligned}
f(1) & =4(1)^{2}+7(1)+6 \\
& =17
\end{aligned}
$$

$$
\therefore \quad f^{\prime}(1)=\lim _{h \rightarrow 0} \frac{f(1+h)-f(1)}{h}
$$

$$
\Rightarrow \quad f^{\prime}(1)=\lim _{h \rightarrow 0} \frac{4 h^{2}+15 h+17-17}{h}
$$

$$
f^{\prime}(1)=\lim _{h \rightarrow 0} \frac{4 h^{2}+15 h}{h}
$$

$$
f^{\prime}(1)=\lim _{h \rightarrow 0} \frac{h(4 h+15)}{h}
$$

$$
f^{\prime}(1)=\lim _{h \rightarrow 0} \frac{(4 h+15)}{1}
$$

$$
f^{\prime}(1)=15
$$

\therefore The derivative by definition is $f^{\prime}(1)=15$.

