Show that for two scalar fields f and g :

$$
\vec{\nabla} \times(f \cdot \vec{\nabla}(g))+\vec{\nabla} \times(g \cdot \vec{\nabla}(f))=\overrightarrow{0}
$$

SOLUTION

We recall some notation and formulas from the vector calculus.

1) For any vector \vec{F}

$$
\vec{\nabla} \times \vec{F} \equiv \operatorname{curl}(\vec{F})
$$

2) For any scalar field φ and any vector \vec{A}

$$
\vec{\nabla} \times(\varphi \vec{A})=\varphi \cdot \operatorname{curl}(\vec{A})+(\vec{\nabla}(\varphi) \times \vec{A})
$$

3) For any scalar field φ

$$
\operatorname{curl}(\vec{\nabla}(\varphi)) \equiv \overrightarrow{0}
$$

(More information: https://en.wikipedia.org/wiki/Vector calculus identities)
4) For two vectors \vec{A} and \vec{B}

$$
(\vec{A} \times \vec{B})=-(\vec{B} \times \vec{A}) \leftrightarrow(\vec{A} \times \vec{B})+(\vec{B} \times \vec{A})=\overrightarrow{0}
$$

(More information: https://en.wikipedia.org/wiki/Cross product)
We transform expression

$$
\vec{\nabla} \times(f \cdot \vec{\nabla}(g))+\vec{\nabla} \times(g \cdot \vec{\nabla}(f))
$$

1) $\vec{\nabla} \times(f \cdot \vec{\nabla}(g))$

$$
\vec{\nabla} \times(\underbrace{f}_{\varphi} \cdot \underbrace{\vec{\nabla}(g)}_{\vec{A}})=(2 \text { formula })=f \cdot \underbrace{\operatorname{curl}(\vec{\nabla}(g))}_{=\overrightarrow{0}(3 \text { formula })}+(\vec{\nabla}(f) \times \vec{\nabla}(g))=
$$

$$
\begin{array}{r}
=f \cdot \overrightarrow{0}+(\vec{\nabla}(f) \times \vec{\nabla}(g))=(\vec{\nabla}(f) \times \vec{\nabla}(g)) \\
\vec{\nabla} \times(f \cdot \vec{\nabla}(g))=(\vec{\nabla}(f) \times \vec{\nabla}(g))
\end{array}
$$

2) $\vec{\nabla} \times(g \cdot \vec{\nabla}(f))$

$$
\begin{aligned}
\vec{\nabla} \times(\underbrace{g}_{\varphi} \cdot \underbrace{\vec{\nabla}(f)}_{\vec{A}})=(2 \text { formula })=g \cdot \underbrace{\operatorname{curl}(\vec{\nabla}(f))}_{=\overrightarrow{0}(3 \text { formula })}+(\vec{\nabla}(g) \times \vec{\nabla}(f))= \\
=g \cdot \overrightarrow{0}+(\vec{\nabla}(g) \times \vec{\nabla}(f))=(\vec{\nabla}(g) \times \vec{\nabla}(f)) \\
\vec{\nabla} \times(g \cdot \vec{\nabla}(f))=(\vec{\nabla}(g) \times \vec{\nabla}(f))
\end{aligned}
$$

Then,

$$
\vec{\nabla} \times(f \cdot \vec{\nabla}(g))+\vec{\nabla} \times(g \cdot \vec{\nabla}(f))=(\underbrace{\vec{\nabla}(f)}_{\vec{A}} \times \underbrace{\vec{\nabla}(g)}_{\vec{B}})+(\underbrace{\vec{\nabla}(g)}_{\vec{B}} \times \underbrace{\vec{\nabla}(f)}_{\vec{A}})=\overrightarrow{0}
$$

Conclusion,

$$
\vec{\nabla} \times(f \cdot \vec{\nabla}(g))+\vec{\nabla} \times(g \cdot \vec{\nabla}(f))=\overrightarrow{0}
$$

