Answer on Question \#73820 - Math - Calculus

Question

Determine whether the following vector field is solenoidal, irrotational or both $\mathrm{F}=\mathrm{x}^{\wedge} 2 . \mathrm{yi}+\mathrm{xyzj}-\mathrm{x}^{\wedge} 2 . \mathrm{y}^{\wedge} 2 . \mathrm{k}$

Solution

Since
$\operatorname{div} F=(\nabla \cdot F)=\partial_{x}\left(x^{2} y\right)+\partial_{y}(x y z)+\partial_{z}\left(x^{2} y^{2}\right)=2 x y+x z \neq 0$ for all
x,y,Z
field F is not strictly solenoidal
And since
$\operatorname{rot} F=[\nabla \times F]=\left(2 x^{2} y-x y, 2 x y^{2}, y x-x^{2}\right) \neq 0$ for all $\mathrm{x}, \mathrm{y}, \mathrm{z}$
field F is not irrotational
That means that field F contains both irrotational and solenoidal part Answer: both.

