Answer on Question \#73772 - Math - Differential Equations

Question

Solve the differential Equation

$$
\frac{d^{2} y}{d x^{2}}+3 \frac{d y}{d x}-10 y=3 x^{2}
$$

Solution

$y^{\prime \prime}+3 y^{\prime}-10 y=3 x^{2}$
is a linear nonhomogeneous differential equation

$$
y^{\prime \prime}+3 y^{\prime}-10 y=0
$$

is a linear homogeneous differential equation
$k^{2}+3 k-10=0$
$k_{1}=-5, \quad k_{2}=2$
$y^{*}=C_{1} e^{-5 x}+C_{2} e^{2 x}$ - general solution of a linear homogeneous differential equation
We consider the right-hand side of [1]:
$f(x)=3 x^{2}$
$\alpha=0, \quad \beta=0, \Delta=\alpha \pm \beta i=0$ does not coincide with solutions [3] of equation, so we seek the particular solution of the nonhomogeneous differential equation in the form

$$
\begin{aligned}
& \bar{y}=A x^{2}+B x+C \\
& \bar{y}^{\prime}=2 A x+B \\
& \bar{y}^{\prime \prime}=2 A
\end{aligned}
$$

$$
2 A+6 A x+3 B-10 A x^{2}-10 B x-10 C=3 x^{2}
$$

$$
-10 A x^{2}+(6 A-10 B) x+(2 A+3 B-10 C)=3 x^{2}
$$

$$
\left\{\begin{array} { l }
{ - 1 0 A = 3 } \\
{ 6 A - 1 0 B = 0 } \\
{ 2 A + 3 B - 1 0 C = 0 }
\end{array} \Rightarrow \left\{\begin{array}{l}
A=-\frac{3}{10} \\
B=-\frac{9}{50} \\
C=-\frac{57}{500}
\end{array}\right.\right.
$$

$$
\bar{y}=-\frac{3}{10} x^{2}-\frac{9}{50} x-\frac{57}{500}
$$

the general solution of equation [1]:

$$
\begin{aligned}
& y=y^{*}+\bar{y} \\
& y=C_{1} e^{-5 x}+C_{2} e^{2 x}-\frac{3}{10} x^{2}-\frac{9}{50} x-\frac{57}{500}
\end{aligned}
$$

Answer: $\quad y=C_{1} e^{-5 x}+C_{2} e^{2 x}-\frac{3}{10} x^{2}-\frac{9}{50} x-\frac{57}{500}$

