QUESTION

A jogger runs from her home to a point A, which is 6 km away. For there 6 km , she begins by running at a constant speed till she reaches a hilly portion 2 km from her home. Here her speed slows down while she runs up the hill, which is a $1-\mathrm{km}$ run. Then she speeds up while running down the hill. The last 2 km of the run are again at constant speed. Draw a graph to show the jogger's speed as a function of the distance from her home. Also find the range of this function.

SOLUTION

There are two different cases of how to change the speed of the jogger.
1 case:
The graph of the jogger's speed is shown on the Figure 1.

Figure 1

As we can see the initial jogger's speed V_{1} is constant for the first 2 km of the distance. The next 1 km the speed decreases to its minimal value $V_{\text {min }}$. Then the speed increases up to V_{2} and stay constant for the last 2 km of distance. Suppose $V_{2}<V_{1}$.

The Figure 1 shown that the values of the jogger's speed function are between $V_{\min }$ and V_{1}. So, the range of this function is $\left[V_{\text {min }}, V_{1}\right]$.

$$
V_{\min } \leq V(s) \leq V_{1}
$$

2 case:
The graph of the jogger's speed is shown on the Figure 2.

Figure 2
As we can see the initial jogger's speed V_{1} is constant for the first 2 km of the distance. The next 1 km the speed decreases to its minimal value $V_{\text {min }}$. Then the speed increases up to V_{2} and stay constant for the last 2 km of distance. Suppose $V_{1}<V_{2}$.

The Figure 2 shown that the values of the jogger's speed function are between $V_{\min }$ and V_{2}. So, the range of this function is $\left[V_{\min }, V_{2}\right]$.

$$
V_{\min } \leq V(s) \leq V_{2}
$$

Conclusion.
These two cases can be described by a single formula:
The range of the jogger's speed function is $\left[V_{\min }, \max \left(V_{1}, V_{2}\right)\right]$.

$$
V_{\min } \leq V(s) \leq \max \left(V_{1}, V_{2}\right)
$$

ANSWER

$$
V_{\min } \leq V(s) \leq \max \left(V_{1}, V_{2}\right)
$$

