Problem 1. Using Green's theorem evaluate the integral

$$
\begin{gather*}
\int_{C} y^{2} d x+3 x y d y \tag{1}\\
C=\left\{(x, y) \mid x^{2}+y^{2}=1, y \geq 0\right\} \tag{2}
\end{gather*}
$$

Solution Let C be a positively oriented, piecewise smooth, simple closed curve in a plane, and let D be the region bounded by C. Let $P(x, y), Q(x, y)$ be functions defined on an open region containing D and having continuous partial derivatives there, then

$$
\int_{C} P(x, y) d x+Q(x, y) d y=\iint_{D}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d x d y
$$

Let's evaluate (1). $P(x, y)=y^{2}, Q(x, y)=3 x y$.

$$
\int_{C} y^{2} d x+3 x y d y=\iint_{D}(3 y-2 y) d x d y=\iint_{D} y d x d y
$$

Let's switch to polar coordinate system

$$
\begin{gathered}
x=r \cos \varphi \\
y=r \sin \varphi \\
D=\{(r \cos \varphi, r \sin \varphi) \mid r \leq 1, \varphi \in[0, \pi]\}
\end{gathered}
$$

Then our integral will turn into (the square of r appears because of Jacobian $J=r$)

$$
\int_{0}^{\pi} \sin \varphi d \varphi \int_{0}^{1} r^{2} d r=\left.\left.\cos \varphi\right|_{\pi} ^{0} \frac{r^{3}}{3}\right|_{0} ^{1}=2 \cdot \frac{1}{3}=\frac{2}{3}
$$

