Answer on Question \#73681 - Math - Vector Calculus QUESTION

For a particle undergoing circular motion with an angular velocity $\vec{\omega}$ in a circle of radius r show that

$$
\vec{\omega} \times(\vec{\omega} \times \vec{r})=-\omega^{2} \vec{r}
$$

SOLUTION

To solve this problem, we need to recall some formulas and facts:

1) The formula for the vector triple product (from a linear algebra)

$$
\vec{a} \times(\vec{b} \times \vec{c})=\vec{b}(\vec{a} \cdot \vec{c})-\vec{c}(\vec{a} \cdot \vec{b}),
$$

where

$$
\begin{gathered}
\vec{a} \cdot \vec{c}=|\vec{a}| \cdot|\vec{c}| \cdot \cos (\varphi) \text { is the scalar(dot) product of vectors } \\
\vec{a} \cdot \vec{a}=|\vec{a}| \cdot|\vec{a}| \cdot \cos \left(0^{\circ}\right)=a \cdot a=a^{2}
\end{gathered}
$$

(More information: https://en.wikipedia.org/wiki/Triple product)
(More information: https://en.wikipedia.org/wiki/Dot product)
2) An angular velocity

$$
\begin{gathered}
\vec{\omega} \perp \vec{r} \rightarrow \vec{\omega} \cdot \vec{r}=|\vec{\omega}| \cdot|\vec{r}| \cdot \cos \left(90^{\circ}\right)=|\vec{\omega}| \cdot|\vec{r}| \cdot 0=0 \\
\\
\vec{\omega} \perp \vec{r} \rightarrow \vec{\omega} \cdot \vec{r}=0
\end{gathered}
$$

(More information: https://en.wikipedia.org/wiki/Angular velocity)
In our case,

$$
\vec{\omega} \times(\vec{\omega} \times \vec{r})=\vec{\omega}(\vec{\omega} \cdot \vec{r})-\vec{r}(\vec{\omega} \cdot \vec{\omega})=\vec{\omega} \cdot 0-\vec{r} \cdot \omega^{2}=-\omega^{2} \vec{r}
$$

Thus,

$$
\vec{\omega} \times(\vec{\omega} \times \vec{r})=-\omega^{2} \vec{r}
$$

