Answer on Question \#73656 - Math - Calculus

Find the volume of the solid obtained by revolving the curve $x=\operatorname{acos}^{3} \theta, y=\operatorname{ain}^{3} \theta$ about the y-axis.

Solution

Let us consider the half of the astroid arranged symmetrically about the y-axis.
If $y=\operatorname{asin}^{3} \theta=a$ then $\theta=\frac{\pi}{2}$
If $y=\operatorname{asin}^{3} \theta=0$ then $\theta=0$
Use the formula

$$
\begin{gathered}
V=2 \pi \int_{a}^{b} x \cdot y(x) d x \\
d x=\left(-3 a \cos ^{2} \theta \sin \theta\right) d \theta \\
V=-2 \pi \int_{\frac{\pi}{2}}^{0} a \cos ^{3} \theta \cdot a \sin ^{3} \theta \cdot\left(-3 a \cos ^{2} \theta \sin \theta\right) d \theta=-6 \pi a^{3} \int_{\frac{\pi}{2}}^{0} \cos ^{5} \theta \cdot \sin ^{4} \theta d \theta \\
=\int_{\frac{\pi}{2}}^{0}\left(1-\sin ^{2} \theta\right)^{2} \cdot \sin ^{4} \theta d \sin \theta=\frac{\sin ^{5} \theta}{5}-\frac{2 \sin ^{7} \theta}{7}+\left.\frac{\sin ^{9} \theta}{9}\right|_{\frac{\pi}{2}} ^{0}=-\frac{8}{315} \\
-6 \pi a^{3} \int_{\frac{\pi}{2}}^{0} \cos ^{5} \theta \cdot \sin ^{4} \theta d \theta=-6 \pi a^{3} \cdot\left(-\frac{8}{315}\right)=\frac{16}{105} \pi a^{3}
\end{gathered}
$$

Then the volume of the whole body formed by the rotation of the astroid will be $V=\frac{32}{105} \pi a^{3}$
Answer: $V=\frac{32}{105} \pi a^{3}$.

