Answer on Question #72875 – Math – Real Analysis

Question

Prove shortly that $|d(x,z)-d(y,z)| \le d(x,y)$ Give its Hint or prove it shortly.

Solution

By the triangle inequality $d(x, z) \le d(x, y) + d(y, z) \rightarrow$

$$\rightarrow d(x,z) - d(y,z) \le d(x,y).$$
 (1)

Also, by the triangle inequality $d(y,z) \le d(y,x) + d(y,z) \rightarrow$

$$\rightarrow -d(y,x) \le d(x,z) - d(y,z)$$
 or

$$d(x,z) - d(y,z) \ge -d(x,y) \quad (2)$$

because

$$d(x,y) = d(y,x)$$

It follows from (1) and (2) that

$$|d(x,z) - d(y,z)| \le d(x,y).$$