Answer on Question \#72711 - Math - Statistics and Probability Question

Changes in airport procedures require considerable planning. Arrival rates of aircraft are important factors that must be taken into account. Suppose small aircraft arrive at a certain airport, according to a Poisson process, at the rate of 6 per hour. Thus, the Poisson parameter for arrivals over a period of hours is $\mu=6 t$. (a) What is the probability that exactly 4 small aircraft arrive during a 1 -hour period? (b) What is the probability that at least 4 arrive during a 1-hour period? (c) If we define a working day as 12 hours, what is the probability that at least 75 small aircraft arrive during a working day?

Solution

a) The probability that exactly 4 small aircrafts arrive during a 1 -hour period is calculated using Poisson distribution with $\mu=6$ airplanes/hour

$$
P(X=4)=\frac{e^{-6}(6)^{4}}{4!}=0.13385
$$

b) The probability that at least 4 small aircrafts arrive during a 1-hour period is $P(X \geq 4)=1-P(X \leq 3)=$
$=1-(P(X=0)+P(X=1)+P(X=2)+P(X=3))$
$=1-\left(\frac{e^{-6}(6)^{0}}{0!}+\frac{e^{-6}(6)^{1}}{1!}+\frac{e^{-6}(6)^{2}}{2!}+\frac{e^{-6}(6)^{3}}{3!}\right)=$
$=1-(0.00248+0.01487+0.04462+0.08924)=0.84879$
c) The probability that at least 75 small aircrafts arrive during a day is calculated using a Poisson distribution with $\mu=6(12)=72$ airplanes/day
$P(X \geq 75)=1-P(X \leq 74)=1-\sum_{x=0}^{74} \frac{e^{-6}(72)^{x}}{x!}=1-0.62267=0.37733$
Answer: a) 0.13385;
b) 0.84879 ; $\mathbf{c)} 0.37733$.

