Answer on Question \#72707, Math / Statistics and Probability
The probability that a student at a local high school fails the screening test for scoliosis (curvature of the spine) is known to be 0.004 . Of the next 1875
students at the school who are screened for scoliosis, find the probability that
(a) fewer than 5 fail the test;
(b) 8,9 , or 10 fail the test.

Solution
Let $X$ be the random variable representing the number of students who fail out of the next 1875 students.
If a student fails the screening test, we consider that as a success.
Then $p=0.004$.
Trials are independent.
Hence, $X$ has a binomial distribution with parameters $n=1875$ and $p=0.004$.

$$
X \sim \operatorname{Bin}(n, p), \text { where } n=1875 \text { and } p=0.004
$$

We have $n=1875$ is large and $p=0.004$ is near 0 , then the binomial distribution can be approximated by the Poisson distribution with parameter

$$
\mu=n p=1875 \times 0.004=7.5<10
$$

The Poisson distribution is a limiting case of the binomial distribution which arises when the number of trials $n$ increases indefinitely whilst the product $\mu=n p$, which is the expected value of the number of successes from the trials, remains constant.
Use Poisson distribution with $p . m . f p(x ; \mu)=\frac{e^{-\mu} \mu^{x}}{x!} \quad x=0,1,2, \ldots$

$$
P(X=x)=\frac{e^{-\mu} \mu^{x}}{x!} \quad x=0,1,2, \ldots
$$

(a) Fewer than 5 fail the test
$P(X<5)=P(X \leq 4)=$
$=P(X=0)+P(X=1)+P(X=2)+P(X=3)+P(X=4)=$
$=\frac{e^{-7.5} 7.5^{0}}{0!}+\frac{e^{-7.5} 7.5^{1}}{1!}+\frac{e^{-7.5} 7.5^{2}}{2!}+\frac{e^{-7.5} 7.5^{3}}{3!}+\frac{e^{-7.5} 7.5^{4}}{4!}=$
$=0.000553+0.004148+0.015555+0.038889+0.072916=$
$=0.132061$
(b) 8,9 , or 10 fail the test
$P(X=8)+P(X=9)+P(X=10)=$
$=\frac{e^{-7.5} 7.5^{8}}{8!}+\frac{e^{-7.5} 7.5^{9}}{9!}+\frac{e^{-7.5} 7.5^{10}}{10!}=$
$=0.13733+0.11444+0.08583=0.33760$

