Answer on Question \#72701, Math / Statistics and Probability
The probability that a student pilot passes the written test for a private pilot's license is 0.7 . Find the probability that a given student will pass the test
(a) on the third try;
(b) before the fourth try.

Solution

Let us consider that a written test for a pilot's license is a trial. Trials are independent. If a student passes the test, we consider that as a success.
Since the person needs to pass the test only once, we are looking for the number of trials to obtain one success, i.e. the Geometric distribution.
Let X be the random variable representing the number of tries to pass the test, that is X is the number of trials required to get $1^{\text {st }}$ success. This is a negative binomial or geometric variable.
$p=P$ (success $)=0.7$ and the number of successes to observe $r=1$.

$$
\begin{gathered}
P(X=x)=b^{*}(x ; r, p) \text { for } x=r, r+1, r+2, \ldots \\
P(X=x)=\binom{x-1}{r-1} p^{r} q^{x-r}
\end{gathered}
$$

The geometric distribution is a special case of the negative binomial distribution such that $r=1$.
(a) on the third try

The probability P that the student passes on the third try

$$
P(X=3)=\binom{3-1}{1-1}(0.7)^{1}(1-0.7)^{3-1}=0.063
$$

(b) before the fourth try

$$
\begin{gathered}
P(X \leq 3)=p+p(1-p)+p(1-p)^{2} \\
P(X \leq 3)=0.7+0.7(1-0.7)+0.7(1-0.7)^{2}=0.973
\end{gathered}
$$

