Answer on Question \#72687, Math / Geometry

Reparameterize the curve w.r.t arc length parameter s : $\gamma(t)=(2 t, 1-3 t, 5+4 t)$.

Answer:

Let's figure out for what value of t will we get the point $(0,1,5)$. First, we consider, $t=0$.

$$
2 t=0 \rightarrow t=0
$$

If $\mathrm{t}=0$, then we need $1-3(0)=1$ and $5+4(0)=5$, which are both true. So, this happens at $\mathrm{t}=0$. This is our initial value. Now, let's figure out $s(t)$.

First,

$$
\begin{gathered}
\gamma^{\prime}(t)=<2+(-3)+4> \\
s(t)=\int_{0}^{t} \sqrt{(2)^{2}+(-3)^{2}+(4)^{2}} d \tau \\
s(t)=\int_{0}^{t} \sqrt{4+9+16} d \tau \\
s(t)=\int_{0}^{t} \sqrt{29} d \tau \\
s(t)=t \sqrt{29}
\end{gathered}
$$

Once we have our expression $s(t)=t \sqrt{29}$ we can solve for t.
We get

$$
t=\frac{s}{\sqrt{29}}
$$

We get final answer.

$$
y(s)=\frac{2}{\sqrt{29}} s, 1-\frac{3}{\sqrt{29}} s, 5+\frac{4}{\sqrt{29}} s
$$

