

Answer on Question #72687, Math / Geometry

Reparameterize the curve w.r.t arc length parameter s : $\gamma(t) = (2t, 1-3t, 5+4t)$.

Answer:

Let's figure out for what value of t will we get the point $(0, 1, 5)$. First, we consider, $t = 0$.

$$2t = 0 \rightarrow t = 0$$

If $t = 0$, then we need $1-3(0) = 1$ and $5+4(0) = 5$, which are both true. So, this happens at $t = 0$. This is our initial value. Now, let's figure out $s(t)$.

First,

$$\gamma'(t) = \langle 2, -3, 4 \rangle$$

$$s(t) = \int_0^t \sqrt{(2)^2 + (-3)^2 + (4)^2} d\tau$$

$$s(t) = \int_0^t \sqrt{4 + 9 + 16} d\tau$$

$$s(t) = \int_0^t \sqrt{29} d\tau$$

$$s(t) = t\sqrt{29}$$

Once we have our expression $s(t) = t\sqrt{29}$ we can solve for t .

We get

$$t = \frac{s}{\sqrt{29}}$$

We get final answer.

$$\gamma(s) = \frac{2}{\sqrt{29}}s, 1 - \frac{3}{\sqrt{29}}s, 5 + \frac{4}{\sqrt{29}}s$$