Hahn-Banach Theorem :

Statement: Let X be a real vector space and p a sub linear functional on X.
Furthermore, let f be a linear functional which is defined on a subspace Z of X
and satisfies

f(x)<g(x) V xez
Then f has a linear extension {(x) from Z to X satisfying
f0<f(x), vxeX, (1)
thatis, f(x) is a linear functional on X, satisfies (1) on X and
f)<f(x) Vv xez.
Proof: Now we discuss stepwise, we shall prove:

() The set E of all linear extensions g of f satisfying g(x) <p(x) on their domain
D can be partially ordered and Zorn's lemma yields a maximal element f(x) of
E.

(. f(x) is defined on the entire space X.

(111) An auxiliary relation which was used in (b). We start with part
Now we start part (i)

Let E be the set of all linear extensions g of f which satisfy the condition
g(x) <p(x) V xe D,

Clearly, E=¢since f<E . On E we can define a partial ordering by
g(x) <h(x) meaning h is an extension of g, that is, by definition, D(h) = D(g)
and h(x) = g(x) for every x e D(g). For any chain C c E we now define ¢(x)
by d(x)=g(x) g(X) if xe D(g) geC. ¢(x) is a linear functional, the domain
being
D(9) = Y D(9).

gcC
which is a vector space since C is a chain. The definition of ¢(x) is
unambiguous. Indeed, for an x e D(g,)~D(g,) with g,,9,C
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we have g,(x) = g,(x) since C is a chain,
so that

9:(X) < 9,(x)0rg,(x) < 9,(x)

g<d forallgEC.

Hence g is an upper bound of C. Since C c E was arbitrary, Zorn's lemma
thus implies that E has a maximal element f By the definition of E, this is a
linear extension of f which satisfies

f(x)<p(x) ¥ xe D), (2)
Now we start part (ii)

We now show that D(f), is all of X. Suppose that this is false. Then we can
choose a

y, € X —=D(f) and consider the subspace y; of X spanned by D(f) and vy;.
Note that y10 since 0e D(f) xeV,

It can be written x =y +ay,
This representation is unique.

In fact, y+ay, =¥+ 4y, with f e D(f)implies y—y =ay, - &y,
y— Y eD(f)When y, ¢ D(f)

, 50 that the only solutionis y—y=0and - =0
This means uniqueness. A functional g; on y; is defined by
g,(y +ay,) = f(y) +ac 3)

where ¢ is any real constant. It is not difficult to see that g; is linear.
Furthermore, for o =0

we have g,(y) = f(y). Hence g; is a proper extension of (f). that is, an
extension such that D(f) is a proper subset of D(g,) Consequently, if we can
prove that g, € E by showing that
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g,(X) <p(x) Vv xe D(g,),

this will contradict the maximalist of (f), so that D(f) = X and D(f): X is
true.

Now we start part (iii)

Accordingly, we must finally show that giwith a suitable ¢ in above
equations. We consider any Y and z in D(f). From (2) and (1) we obtain

ty)-f@="1(y-2<py-2)
= p(y+y1_y1_z)
<p(y+y)+py,-2)

Taking the last term to the left and the term (f) to the right,
we have
Py~ - (@) < ply+y)— ()

where Y/ is fixed. Since Y does not appear on the left and z not on the right,
the inequality continues to hold if we take the supremum over z e D(f)on the

left and the infimum over y < D(f) on the right, call it m,

My <m and My <C<mM,

we have from (7) (8a) (8b) —

Py, -9)-f(@) <c

c<p(y, +¥,) - () zeD(f) ye D(f)

We prove (6) first for negative « in equation and then for positive« .
a<0 and putz=a'y

—p(-y, —aty) - flay)<c

Multiplication by -« > 0 gives

ap(-y; —aty)+ f(y) <-ac

From this and (5), using y-ay, = x, we obtain the desired inequality
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0,09 = () +ac < —ap(-y; —a'y) = p(ay, + ) = p(X)

For «= 0 we havexe D(f) and nothing to prove. For o > 0 we use (8b)
with y replaced by «'y to get

c<p(y, +aty) - f(aty)
Multiplication by « > 0 gives

ac <—ap(y, +a*y) - 1 (¥) = p(x) — ().
From this and (5),

0.0 = f(y) +ac < p(x)

Hence proved
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