Zorn's lemma

Statement: Let $\mathrm{M} \neq 0$ be a partially ordered set. Suppose that every chain $C \subset P$ has an upper bound. Then P has at least one maximal element.

Proof: For each $A \in P$, Let TA be the set defined by
$T_{A}=\left\{\begin{array}{l}\{A\} \quad \text { if } A \text { is a max imal element of } P \\ \{Q \in P l A \notin Q\} \text { if } A \text { is not a max imal element of } P\end{array}\right.$
Observe that TA non-empty for every $A \in P$, and hence $\{T A\} A \in P$ is a family of non-empty sets.

By the Axiom of Choice there is a family of sets $\{F A\} A \in P$ such that $F A \subseteq T A$ and $F A$ has exactly one element for all $A \in P$. For each $A \in P$, let $S A$ be the single element in FA.

By the definition of $T A$ we see that $S A \in P$ and $A \subseteq S A$ for all $A \in P$; moreover, we have $\mathrm{SA}=\mathrm{A}$ if and only if A is a maximal element of P .

To prove the theorem, it therefore suffices to find some $\mathrm{M} \in \mathrm{P}$ such that $\mathrm{SM}=$ M.

Let $\mathrm{R} \subseteq \mathrm{P}$.
The family R is closed if $A \in R$ implies $S A \in R$, and if $C \subseteq R$ is a chain then

$$
\underset{C \in C}{ } \mathrm{Y} C \in R
$$

By hypothesis the family P is closed. Let M be the intersection of all closed families in P .

We now prove four Points about M. Using these Points, we deduce the theorem, as follows.

Let $M=\underset{C \in M}{\mathrm{Y}} C \in R$ Point 4 says that M is a chain, and Point 1 says that M is closed.
It follows that $\mathrm{M} \in \mathrm{M}$. Again using the fact that M is closed, we deduce that SM $\in \mathrm{M}$.

However, we know that $C \subseteq M$ for all $C \in M$, and hence in particular that $S M$ \subseteq M.

As noted above, we know that $\mathrm{M} \subseteq \mathrm{SM}$, and we deduce that $\mathrm{SM}=\mathrm{M}$, and that is what needed to be proved.

Point 1. We will show that the family M is closed.
Let $A \in M$. Then $A \in R$ for all closed families $R \subseteq P$, and
hence $S A \in R$ for all closed families $R \subseteq P$, and
hence $S A \in M$. A similar argument shows that
if $\mathrm{C} \subseteq \mathrm{M}$ is a chain then $\mathrm{Y}_{C \in C} C \in M$ the details are left to the reader.
Point 2. Let $A \in M$. Suppose that $B \in M$ and $B \neq A$ imply $S B \subseteq A$. We will show that $\mathrm{B} \subseteq \mathrm{A}$ or $\mathrm{B} \supseteq \mathrm{SA}$ for all $\mathrm{B} \in \mathrm{M}$.

Let $Z A=\{C \in M \mid C \subseteq A$ or $C \supseteq S A\}$.
We first show that ZA is closed.
First, let $\mathrm{D} \in \mathrm{ZA}$. Then $\mathrm{D} \in \mathrm{M}$, and $\mathrm{D} \subseteq \mathrm{A}$ or $\mathrm{D} \supseteq \mathrm{SA}$.
Because M is closed, then $S D \in M$. Suppose first that $D \subseteq A$. If $D \neq A$, then by hypothesis on A we deduce that $\mathrm{SD} \subseteq \mathrm{A}$,
which implies that $\mathrm{SD} \in \mathrm{ZA}$.
If $D=A$, then $S D=S A$, and hence $S D \supseteq S A$,
which implies $\mathrm{SD} \in \mathrm{ZA}$.
Suppose second that $\mathrm{D} \supseteq \mathrm{SA}$. Because $\mathrm{SD} \supseteq \mathrm{D}$, it follows that $\mathrm{SD} \supseteq \mathrm{SA}$, which implies $S D \in Z A$.

Next, let $\mathrm{C} \subseteq \mathrm{ZA}$ be a chain. Because M is closed, we know that $\underset{C \in C}{\mathrm{Y}} C \in M$
There are two cases. First, suppose that $\mathrm{C} \subseteq \mathrm{A}$ for all $\mathrm{C} \in \mathrm{C}$.
Then it follows that $\mathrm{Y}_{C \in C} C \subseteq A$ and hence $\underset{C \in C}{\mathrm{Y}} C \subseteq Z_{A}$
Second, suppose that there is some $E \in C$ such that $E \notin A$. Because $E \in Z A$, then $\mathrm{E} \supseteq$ SA. Because $\underset{C \in C}{\mathrm{Y}} C \supseteq E$
it follows that
$\underset{C \in C}{ } C \supseteq S_{A}$ Hence $\underset{C \in C}{Y C \in Z_{A}}$
We deduce that ZA is closed. Because M is the intersection of all closed families of sets in P , it follows that $\mathrm{M} \subseteq \mathrm{ZA}$.

On the other hand, by definition we know that $\mathrm{ZA} \subseteq \mathrm{M}$, and it follows that $\mathrm{ZA}=\mathrm{M}$. We deduce that $\mathrm{B} \subseteq \mathrm{A}$ or $\mathrm{B} \supseteq \mathrm{SA}$ for all $\mathrm{B} \in \mathrm{M}$.

Point 3. We will show that if $A \in M$, then $B \in M$ and $B \neq A$ imply $S B \subseteq A$.
Let $W=\{A \in M \mid B \in M$ and $B \neq A$ imply $S B \subseteq A\}$.
We first show that W is closed.
First, let $F \in W$. Then $F \in M$, and $B \in M$ and $B \neq F$ imply $S B \subseteq F$. Because
M is closed, we know that $S F \in M$.
Let $G \in M$, and suppose that $G \neq S F$.
It follows that $\mathrm{G} \neq \mathrm{SF}$. By Point 2 we know that $\mathrm{G} \subseteq \mathrm{F}$.
There are two cases.
First, suppose that $G \neq F$. Then $S G \subseteq F$. Because $F \subseteq S F$, it follows that $S G \subseteq$ SF.

Second, suppose that $\mathrm{G}=\mathrm{F}$. Then $\mathrm{SG}=\mathrm{SF}$, and hence $\mathrm{SG} \subseteq \mathrm{SF}$. We deduce that $\mathrm{SF} \in \mathrm{W}$.
Next, let $\mathrm{C} \subseteq \mathrm{W}$ be a chain. Because M is closed we know that $\mathrm{Y}_{C \in C} C \in M$
Let $\mathrm{H} \in \mathrm{M}$, and suppose that $\mathrm{H} \underset{C \in C}{\mathrm{Y}} \mathrm{C}$. If it were the case that $\mathrm{C} \subseteq \mathrm{H}$ for all $\mathrm{C} \in$ C, then it would follow that $\mathrm{Y}_{C \in C} C \subseteq H$ which is not possible.

Hence there is some $K \in C$ such that $K \notin H$.
Because $K \in W$, then $B \in M$ and $B \notin K$ imply $S B \subseteq K$.
By Point 2 we deduce that $\mathrm{B} \subseteq \mathrm{K}$ or $\mathrm{B} \supseteq \mathrm{SK}$ for all $\mathrm{B} \in \mathrm{M}$. Because $\mathrm{SK} \supseteq \mathrm{K}$, it follows that $\mathrm{B} \subseteq \mathrm{K}$ or $\mathrm{B} \supseteq \mathrm{K}$ for all $\mathrm{B} \in \mathrm{M}$.
Because $K \neq H$, it follows that $K \supseteq H$. If $K=H$ then it would follow that $K \subseteq H$, which is not true, and hence we deduce that $\mathrm{H} \neq \mathrm{K}$.
It then follows that $\mathrm{SH} \subseteq \mathrm{K}$. Because $\mathrm{K} \in \mathrm{C}$, we deduce that

SH $\subseteq Y_{C \in C} C$ Hence $\underset{C \in C}{\mathrm{Y}} C \in W$ We deduce that W is closed.
By an argument similar to the one used in Point 2, we deduce that $\mathrm{W}=\mathrm{M}$, and
therefore we know that
if $\mathrm{A} \in \mathrm{M}$, then $\mathrm{B} \neq \mathrm{A}$ implies $\mathrm{SB} \subseteq \mathrm{A}$ for all $\mathrm{B} \in \mathrm{M}$.
Point 4. We will show that M is a chain.
Let $\mathrm{A}, \mathrm{C} \in \mathrm{M}$. By Point 3 we know that $\mathrm{B} \neq \mathrm{A}$
implies $\mathrm{SB} \subseteq \mathrm{A}$ for all $\mathrm{B} \in \mathrm{M}$, and hence by Point 2 we deduce that $\mathrm{B} \subseteq \mathrm{A}$ or $\mathrm{B} \supseteq \mathrm{SA}$ for all $\mathrm{B} \in \mathrm{M}$.

Hence $\mathrm{C} \subseteq \mathrm{A}$ or $\mathrm{C} \supseteq \mathrm{SA}$. Because $\mathrm{SA} \supseteq \mathrm{A}$,
it follows that $\mathrm{C} \subseteq \mathrm{A}$ or $\mathrm{C} \supseteq \mathrm{A}$. We deduce that M is a chain.
Hence Proved.

Answer provided by AssignmentExpert.com

