Answer on Question #72635 – Math – Statistics and Probability Question

Suppose that airplane engines operate independently and fail with probability equal to 0.4. Assuming that a plane makes a safe flight if at least one-half of its engines run, determine whether a 4-engine plane or a 2-engine plane has the higher probability for a successful flight.

Solution

Let X be the random variable representing the number of engines running out of n engines in a plane. Let us consider, running of an engine is a success.

Then q = 0.4, p = 1 - q = 1 - 0.4 = 0.6.

Trials are independent.

Hence, $X \sim Bin(n, p = 0.6)$

The probability mass function (p. m. f) is P(X = r) = h(r: n, 0, 6) where r = 0, 1, 2, ..., n

$$P(\Lambda - X) = D(X; n, 0.0), \text{ where } X = 0, 1, 2, ..., n$$

$$P(X = x) = \binom{n}{x} (0.6)^{x} (0.4)^{n-x}$$
, where $x = 0, 1, 2, ..., n$

a) For the 2-engine plane to make a successful flight, at least one engine must be running.

If $n = 2, X \sim Bin(2, p = 0.6)$.

Then

P(at least one − half of its engines run) = *P*(*X* ≥ 1) = 1 − *P*(*X* = 0) = = $1 - {\binom{2}{0}} (0.6)^0 (0.4)^{2-0} = 1 - (0.4)^2 = 0.84$

b) On the other hand, for the 4-engine plane to make a successful flight, at least two engines must be running.

If $n = 4, X \sim Bin(4, p = 0.6)$.

Then

 $P(\text{at least one} - \text{half of its engines run}) = P(X \ge 2) = 1 - P(X < 2) =$ = 1 - (P(X = 0) + P(X = 1)) = = 1 - ((⁴₀)(0.6)⁰(0.4)⁴⁻⁰ + (⁴₁)(0.6)¹(0.4)⁴⁻¹) = = 1 - ((0.4)⁴ + 4(0.6)(0.4)³) = 0.8208

Since 0.84 > 0.8208, the 2-engine plane has a higher probability for a successful flight than the 4-engine plane.

Answer: the 2-engine plane has a higher probability for a successful flight than the 4-engine plane.

Answer provided by https://www.AssignmentExpert.com