Answer on Question \#72635 - Math - Statistics and Probability Question

Suppose that airplane engines operate independently and fail with probability equal to 0.4. Assuming that a plane makes a safe flight if at least one-half of its engines run, determine whether a 4-engine plane or a 2-engine plane has the higher probability for a successful flight.

Solution

Let X be the random variable representing the number of engines running out of n engines in a plane. Let us consider, running of an engine is a success.
Then $q=0.4, p=1-q=1-0.4=0.6$.
Trials are independent.
Hence, $X \sim \operatorname{Bin}(n, p=0.6)$
The probability mass function $(p . m . f)$ is
$P(X=x)=b(x ; n, 0.6)$, where $x=0,1,2, \ldots, n$
$P(X=x)=\binom{n}{x}(0.6)^{x}(0.4)^{n-x}$, where $x=0,1,2, \ldots, n$
a) For the 2-engine plane to make a successful flight, at least one engine must be running.
If $n=2, X \sim \operatorname{Bin}(2, p=0.6)$.
Then
$P($ at least one - half of its engines run $)=P(X \geq 1)=1-P(X=0)=$
$=1-\binom{2}{0}(0.6)^{0}(0.4)^{2-0}=1-(0.4)^{2}=0.84$
b) On the other hand, for the 4 -engine plane to make a successful flight, at least two engines must be running.
If $n=4, X \sim \operatorname{Bin}(4, p=0.6)$.
Then
$P($ at least one - half of its engines run $)=P(X \geq 2)=1-P(X<2)=$
$=1-(P(X=0)+P(X=1))=$
$=1-\left(\binom{4}{0}(0.6)^{0}(0.4)^{4-0}+\binom{4}{1}(0.6)^{1}(0.4)^{4-1}\right)=$
$=1-\left((0.4)^{4}+4(0.6)(0.4)^{3}\right)=0.8208$
Since $0.84>0.8208$, the 2-engine plane has a higher probability for a successful flight than the 4-engine plane.

Answer: the 2-engine plane has a higher probability for a successful flight than the 4-engine plane.

