Answer on Question \#72631, Math / Statistics and Probability It is known that 60% of mice inoculated with a serum are protected from a certain disease. If 5 mice are inoculated, find the probability that
(a) none contracts the disease;
(b) fewer than 2 contract the disease;
(c) more than 3 contract the disease.

Solution
Let X be the random variable representing the number of mice that contract the disease out of 5 mice inoculated with a serum.
If a mouse contracts the disease, we consider that as a success.
If a mouse does not contract the disease, will be a failure.
Then $q=0.6, p=1-q=0.4$. Trials are independent.
Hence, $X \sim \operatorname{Bin}(n, p)$, where $n=5$ and $p=0.4$.
$P(X=x)=b\left((x ; 5,0.4)=\binom{5}{x}(0.4)^{x}(0.6)^{5-x}\right.$, where $x=0,1,2,3,4,5$
(a) none contracts the disease

$$
P(X=0)=\binom{5}{0}(0.4)^{0}(0.6)^{5-0}=(0.6)^{5}=0.07776
$$

(b) fewer than 2 contract the disease
$P(X<2)=P(X \leq 1)=P(X=0)+P(X=1)=$
$=0.07776+\binom{5}{1}(0.4)^{1}(0.6)^{5-1}=0.07776+5(0.4)(0.6)^{4}=0.33696$
(c) more than 3 contract the disease
$P(X>3)=1-P(X \leq 3)=$
$=1-(P(X=0)+P(X=1)+P(X=2)+P(X=3))=$
$=1-\left(0.33696+\binom{5}{2}(0.4)^{2}(0.6)^{5-2}+\binom{5}{3}(0.4)^{3}(0.6)^{5-3}\right)=$
$=1-\left(0.33696+\frac{5!}{2!(5-2)!}(0.4)^{2}(0.6)^{3}+\frac{5!}{3!(5-3)!}(0.4)^{3}(0.6)^{5-3}\right)=$
$=1-0.91296=0.08704$
Or
$P(X>3)=P(X \geq 4)=P(X=4)+P(X=5)=$
$=\binom{5}{4}(0.4)^{4}(0.6)^{5-4}+\binom{5}{5}(0.4)^{5}(0.6)^{5-5}=$
$=5(0.4)^{4}(0.6)+(0.4)^{5}=0.08704$
Answer provided by https://www.AssignmentExpert.com

