Answer on Question \#72628, Math / Statistics and Probability
A company is interested in evaluating its current inspection procedure for shipments of 50 identical items. The procedure is to take a sample of 5 and pass the shipment if no more than 2 are found to be defective. What proportion of shipments with 20% defectives will be accepted?
Solution
Let X be the number of defective items in the sample of $n=5$ taken from $N=50$ without replacement. Suppose the shipment has M defective items. Thus X is a hypergeometric variable with $X \sim$ Hypergeometric $(n=5, N=50, M=p N)$, where p is the proportion of defectives in the shipment. If $p=0.2$ then $M=10$.

$$
P(X=k)=h_{(M, n, N)}(k)=\frac{\binom{M}{k}\binom{N-M}{n-k}}{\binom{N}{n}}
$$

The probability of accepting the shipment is
$P(X \leq 2)=P(X=0)+P(X=1)+P(X=2)=$
$=h_{(10,5,50)}(0)+h_{(10,5,50)}(1)+h_{(10,5,50)}(2)=$
$=\frac{\binom{10}{0}\binom{50-10}{5-0}}{\binom{50}{5}}+\frac{\binom{10}{1}\binom{50-10}{5-1}}{\binom{50}{5}}+\frac{\binom{10}{2}\binom{50-10}{5-2}}{\binom{50}{5}} \approx$
$\approx 0.31056+0.43134+0.20984 \approx 0.9517$
$\approx 0.31056+0.43134+0.20984 \approx 0.9517$
$\frac{\binom{10}{0}\binom{50-10}{5-0}}{\binom{50}{5}}=\frac{\frac{10!}{0!(10-0)!} \cdot \frac{40!}{5!(40-5)!}}{\frac{50!}{5!(50-5)!}}=\frac{1 \cdot \frac{40(39)(38)(37)(36)}{1(2)(3)(4)(5)}}{\frac{50(49)(48)(47)(46)}{1(2)(3)(4)(5)}}=$
$=0.31056$
$\frac{\binom{10}{1}\binom{50-10}{5-1}}{\binom{50}{5}}=\frac{\frac{10!}{1!(10-1)!} \cdot \frac{40!}{4!(40-4)!}}{\frac{50!}{5!(50-5)!}}=\frac{10 \cdot \frac{40(39)(38)(37)}{1(2)(3)(4)}}{\frac{50(49)(48)(47)(46)}{1(2)(3)(4)(5)}}=$
$=0.43134$
$\frac{\binom{10}{2}\binom{50-10}{5-2}}{\binom{50}{5}}=\frac{\frac{10!}{2!(10-2)!} \cdot \frac{40!}{3!(40-3)!}}{\frac{50!}{5!(50-5)!}}=\frac{\frac{10(9)}{2} \cdot \frac{40(39)(38)}{1(2)(3)}}{\frac{50(49)(48)(47)(46)}{1(2)(3)(4)(5)}}=$
$=0.20984$

Answer: ≈ 0.9517; 95.17\%.

