Answer on Question \#72627, Math / Statistics and Probability
Find the probability of being dealt a bridge hand of 13 cards containing 5 spades, 2 hearts, 3 diamonds, and 3 clubs.
Solution
A bridge deck has 52 cards with 13 cards in each of four suits: spades, hearts, diamonds, and clubs.
Let X_{1}, X_{2}, X_{3} and X_{4} are the random variables which denote the number of spades, hearts, diamonds, and clubs respectively, in a bridge hand of 13 cards.
Thus, X_{1}, X_{2}, X_{3} and X_{4} jointly have a multivariate hypergeometric distribution with parameters, $N=52, n=13$ and $a_{i}=13, \forall i=1,2,3,4$.
Joint probability mass function of X_{1}, X_{2}, X_{3} and X_{4} is given by
$h\left(\begin{array}{c}x_{1}, x_{2}, x_{3}, x_{4} \\ a_{1}=13, a_{2}=13, a_{3}=13, a_{4}=13 \\ N=52, n=13\end{array}\right)$
$=\frac{\binom{a_{1}}{x_{1}}\binom{a_{2}}{x_{2}}\binom{a_{3}}{x_{3}}\binom{a_{4}}{x_{4}}}{\binom{N}{n}}$ with $\sum_{i=1}^{4} x_{i}=n$ and $\sum_{i=1}^{4} a_{i}=N$
$=\frac{\binom{13}{x_{1}}\binom{13}{x_{2}}\binom{13}{x_{3}}\binom{13}{x_{4}}}{\binom{52}{13}}$
We have that $x_{1}=5, x_{2}=2, x_{3}=3, x_{4}=3$. Then
$h\left(\begin{array}{c}x_{1}=5, x_{2}=2, x_{3}=3, x_{4}=3 \\ a_{1}=13, a_{2}=13, a_{3}=13, a_{4}=13 \\ N=52, n=13\end{array}\right)=$
$=\frac{\binom{13}{5}\binom{13}{2}\binom{13}{3}\binom{13}{3}}{\binom{52}{13}}=$
$=\frac{\frac{13!}{5!(13-5)!} \cdot \frac{13!}{2!(13-2)!} \cdot \frac{13!}{3!(13-3)!} \cdot \frac{13!}{3!(13-3)!}}{\frac{52!}{13!(52-13)!}}=$
$=\frac{1287(78)(286)(286)}{635013559600} \approx$
≈ 0.01293

